<p>Part I: Introduction, Numerical Overview, and Data-Sets.</p><p>1. The march towards the quantitative analysis of palaeolimnological data <br>2. Overview of numerical methods in palaeolimnology<br>3. Data-sets</p><p>Part II: Numerical Methods for the Analysis of Modern and Stratigraphical Palaeolimnological Data</p><p>4. Introduction and overview of Part II<br>5. Exploratory data analysis and data display<br>6. Assessment of uncertainties associated with palaeolimnological laboratory methods and microfossil analysis <br>7. Clustering and partitioning<br>8. From classical to canonical ordination<br>9. Statistical learning in palaeolimnology</p><p>Part III: Numerical Methods for the Analysis of Stratigraphical Palaeolimnological Data</p><p>10. Introduction and overview of Part III<br>11. Analysis of stratigraphical data<br>12. Estimation of age-depth relationships <br>13. Core correlation<br>14. Quantitative environmental reconstructions from biological data 15. Analogue methods in palaeolimnology<br>16. Autocorrelogram and periodogram analyses of palaeolimnological temporal-series from lakes in central and western North America to assess shifts in drought conditions</p><p>Part IV: Case Studies and Future Developments in Quantitative Palaeolimnology</p><p>17. Introduction and overview of Part IV<br>18. Limnological responses to environmental changes at inter-annual to decadal time scales<br>19.Human impacts – applications of numerical methods to evaluate surface-water acidification and eutrophication<br>20.Tracking Holocene climatic change with aquatic biota from lake sediments: case studies of commonly used numerical techniques<br>21. Conclusions and future challenges.- Glossary, acronyms, and abbreviations<br>Index</p>