1 Introductory.- 1.1 Welding in ancient and medieval times.- 1.2 The advent of fusion welding.- 1.3 The theory of metal joining techniques.- 1.4 Welding engineering.- 2 Processes and Types of Joint.- 2.1 The general character of welding, brazing, soldering and adhesive jointing.- 2.2 The nature of welding processes.- 2.2.1 The classification of fusion welding processes.- 2.2.2 Heat source intensity.- 2.2.3 Heat input rate.- 2.2.4 Shielding methods.- 2.3 Types of fusion welded joint.- 3 Mass and Heat Flow in Welding.- 3.1 General.- 3.2 Mass flow: general.- 3.3 Mass flow from the electrode to the workpiece.- 3.3.1 The pinch instability.- 3.3.2 Other modes of instability.- 3.4 Mass flow in the weld pool.- 3.5 Heat flow : general.- 3.5.1 Heat sources.- 3.5.2 The welding arc.- 3.5.2.1 Electrode interactions.- 3.5.2.2 The arc column.- 3.5.3 Heat flow in the electrode.- 3.5.3.1 Time-dependent heat flow.- 3.5.4 Heat flow in the weld pool.- 3.5.5 Heat flow in the solid workpiece: theory.- 3.5.6 Heat flow in the solid workpiece: experimental.- 4 Metallurgical Effects of the Weld Thermal Cycle.- 4.1 Metallurgical effects in the weld metal.- 4.1.1 Gas-metal reactions.- 4.1.1.1 Absorption.- 4.1.1.2 Reaction.- 4.1.1.3 Evolution.- 4.1.2 Dilution and uniformity of the weld deposit.- 4.1.3 Weld pool solidification.- 4.1.4 Weld cracking.- 4.1.4.1 Supersokdus cracking.- 4.1.4.2 Subsolidus cracking.- 4.2 Metallurgical effects in the parent metal and solidified weld metal.- 4.2.1 Microstructural changes in the heat-affected zone.- 4.2.2 Precipitation and embrittlement in the heat-affected zone.- 4.2.3 Contraction and residual stress.- 5 Solid-Phase Welding.- 5.1 Fundamentals.- 5.1.1 The cohesion and strength of metals.- 5.1.2 Surface deformation.- 5.1.3 Surface films.- 5.1.4 Recrystallisation.- 5.1.5 Diffusion.- 5.2 Processes.- 5.2.1 Pressure welding at elevated temperature.- 5.2.2 Diffusion bonding.- 5.2.3 Cold pressure welding.- 5.2.4 Friction welding.- 5.2.5 Explosive welding.- 6 Brazing, Soldering and Adhesive Bonding.- 6.1 Physical aspects.- 6.1.1 Bonding.- 6.1.2 Surface energy and contact angle.- 6.1.3 Capillary action.- 6.2 Soldering and brazing.- 6.2.1 Wetting and spreading.- 6.2.2 Filling the joint.- 6.2.3 Solidification range.- 6.3 Soldering.- 6.3.1 Joint design.- 6.3.2 Solders.- 6.3.3 Fluxes.- 6.3.4 Soldering methods.- 6.3.5 Application to various metals.- 6.4 Brazing.- 6.4.1 Joint design.- 6.4.2 Brazing solders.- 6.4.3 Fluxes and protective atmospheres.- 6.4.4 Brazing methods.- 6.4.5 Bronze welding.- 6.4.6 Application to various metals.- 6.5 Adhesive bonding.- 6.5.1 Mechanical strength.- 6.5.1.1 Contact angle.- 6.5.1.2 Residual stress and stress concentration factors.- 6.5.2 Bonding methods.- 6.5.2.1 Preparing the surface.- 6.5.2.2 Types of adhesive and the mode of application.- 6.5.2.3 Curing the joint.- 6.5.2.4 Testing.- 6.5.3 Applications.- 7 Carbon and Ferritic-Alloy Steels.- 7.1 Scope.- 7.2 Metallurgy of the liquid weld metal.- 7.2.1 Gas—metal reactions.- 7.2.1.1 Reactions in the transferring drop.- 7.2.1.2 Reactions in the weld pool.- 7.2.2 Slag-metal reactions.- 7.2.2.1 The mechanics of slag-metal interaction.- 7.2.2.2 The chemistry of slag-metal interaction.- 7.2.3 Solidification and solidification cracking.- 7.3 Transformation and microstructure of steel.- 7.3.1 Transformation and microstructure of weld metal.- 7.3.2 Transformation and microstructure in the heat-affected zone.- 7.4 The mechanical properties of the welded joint.- 7.4.1 The mechanical properties of weld metals.- 7.4.2 The mechanical properties of the heat-affected zone.- 7.4.2.1 The hardness of the HAZ.- 7.4.2.2 The fracture toughness of the HAZ.- 7.5 Stress intensification, embrittlement, and cracking of fusion welds below the solidus.- 7.5.1 Stress concentration.- 7.5.2 Embrittlement of fusion welds.- 7.5.3 The hydrogen embrittlement and cracking of welds in steel.- 7.5.3.1 Hydrogen attack.- 7.5.3.2 Hydrogen embrittlement.- 7.5.3.3 The solution of hydrogen.- 7.5.3.4 Cracking due to dissolved hydrogen.- 7.5.3.5 Hydrogen-induced cold cracking in welds.- 7.5.3.6 Testing for hydrogen-induced cold cracking.- 7.5.3.7 Measures to avoid hydrogen-induced cold cracking.- 7.5.4 Chevron cracking.- 7.5.5 Lamellar tearing.- 7.5.6 Reheat cracking.- 7.6 Welding problems with iron and steel products.- 7.6.1 Cast iron.- 7.6.2 Steels used primarily for their mechanical properties.- 7.6.2.1 Carbon and carbon-manganese steels.- 7.6.2.2 Microalloyed steels.- 7.6.2.3 Low-alloy normalised and tempered (NT) steels.- 7.6.2.4 Low-alloy quenched and tempered (QT) steels.- 7.6.3 Steels for subzero temperature use.- 7.6.4 Low-alloy corrosion- and heat-resisting steels.- 7.6.5 Ferritic and austenitic/ferritic chromium stainless steels.- 8 Austenitic and High-Alloy Steels.- 8.1 Scope.- 8.2 Metallurgy of the weld metal and heat-affected zone.- 8.2.1 Alloy constitution.- 8.2.2 Carbide precipitation.- 8.2.3 Solidification cracking in the weld deposit.- 8.2.4 Hot cracking in the heat-affected zone during welding.- 8.2.5 Reheat cracking.- 8.3 Corrosion.- 8.3.1 Intergranular corrosion.- 8.3.2 Stress corrosion cracking.- 8.3.3 Preferential corrosion of welds.- 8.4 Corrosion-resistant steels: alloys and welding procedures.- 8.5 Weld overlay cladding and dissimilar metal joints.- 8.6 Heat-resisting steels: alloys and welding procedures.- 8.7 Hardenable high-alloy steels.- 9 Non-Ferrous Metals.- 9.1 Aluminium and its alloys.- 9.1.1 Processes and materials.- 9.1.2 Porosity.- 9.1.3 Cracking.- 9.1.4 Mechanical properties.- 9.1.5 Alloys and welding procedures.- 9.2 Magnesium and its alloys.- 9.2.1 Alloys and welding procedures.- 9.2.2 Oxide film removal.- 9.2.3 Cracking.- 9.2.4 Mechanical properties.- 9.2.5 Corrosion resistance and fire risk.- 9.3 Copper and its alloys.- 9.3.1 Processes and materials.- 9.3.2 Heat input.- 9.3.3 Porosity.- 9.3.4 Cracking.- 9.3.5 Mechanical properties.- 9.3.6 Alloys and welding procedures.- 9.4 Nickel and its alloys.- 9.4.1 Cracking.- 9.4.2 Porosity.- 9.4.3 Mechanical properties.- 9.4.4 Corrosion resistance.- 9.4.5 Oxidation and creep resistance.- 9.4.6 Alloys and welding procedures.- 9.5 The reactive and refractory metals — beryllium, titanium, zirconium, niobium, molybdenum, tantalum and tungsten.- 9.5.1 Embrittlement due to gas absorption.- 9.5.2 Embrittlement due to recrystalhsation.- 9.5.3 Porosity.- 9.5.4 Cracking.- 9.5.5 Tensile properties.- 9.5.6 Alloys and welding procedures.- 9.6 The low-melting metals: lead and zinc.- 9.6.1 Lead.- 9.6.2 Zinc.- 9.7 The precious metals: silver, gold, platinum.- 9.7.1 Silver.- 9.7.2 Gold.- 9.7.3 Platinum.- 9.7.4 Other platinum-group metals.- 10 The Behaviour of Welds in Service.- 10.1 Reliability.- 10.2 Service problems associated with welding.- 10.3 Fast crack growth.- 10.3.1 General.- 10.3.2 Linear elastic-fracture mechanics (LEFM).- 10.3.3 Alternative means of estimating or measuring fracture toughness.- 10.4 Slow crack propagation.- 10.5 Corrosion of welds.- 10.6 Risk analysis.- Appendix 1 Symbols.- Appendix 2 Conversion Factors.