Somatic Embryogenesis.- Development and Characterization of in Vitro Embryogenic Systems in Conifers.- 1. Abstract.- 2. Introduction.- 3. Initiation of Embryogenic Callus in Conifers.- 3.1. Picea.- 3.1.1. Origin of embryogenic callus.- 3.1.2. Optimum initiation window.- 3.1.3. Quantification of embryogenic capacity.- 3.2. Pinus.- 3.2.1. Pond pine.- 3.2.2. Loblolly pine.- 3.2.3. White pine.- 3.3. Comparison of in vitro embryogenesis in Pinus and Picea.- 4. Biochemical Characterization of Embryogenic Conifer Callus.- 5. Ultrastructural Characterization of Embryogenic Conifer Callus.- 6. Conifer Embryogenic Suspension Culture.- 7. Development of Conifer Somatic Embryos to Plants.- 8. Comparison of in vivo and in vitro Conifer Embryogenesis.- 9. Summary.- Studies on Embryogenesis of Woody Plants in China.- 0. Abstract.- 1. Introduction.- 2. Factors Affecting Embryoid Formation.- 2.1. Pretreatment.- 2.2. Expiant.- 2.3. Media and its supplements.- 2.4. Environmental factors.- 3. Origin of Embryoids.- 3.1. Embryoids from pollen.- 3.2. Embryoids from somatic tissue.- 4. Abnormal Embryoids and Measures to Prevent their Formation.- 4.1. Abnormal embryoid types.- 4.1.1. Abnormal globular, heart, torpedo, and rod shaped.- 4.1.2. Embryoids from multiple meristems.- 4.1.3. Embryoids with abnormal root and shoot poles.- 4.1.4. Embryoids with abnormal cotyledons.- 4.1.5. Vitreous embryoids.- 4.2. Measures to prevent formation of abnormal embryoids.- 4.2.1. Embryoid maturation.- 4.2.2. Hormone adjustments.- 4.2.3. Removal of toxins.- 4.2.4. Removal of abnormal embryoids from culture.- Morphological Definition of Phenocritical Period for Initiation of Haploid Embryogenic Tissue from Explants of Larix Decidua.- Abstract.- 1. Introduction.- 2. Procedure.- 2.1. Materials and methods.- 2.1.1. Description of source material.- 2.1.2. Establishment of morphological markers.- 2.1.3. Application of morphological markers.- 2.1.4. Degree-days.- 2.1.5. Megagametophyte position.- 2.1.6. Statistics.- 2.1.7. Induction.- 3. Results.- 3.1.1. Morphological markers of Larix deciduas.- 3.1.2. Predictive value of morphological markers for Larix.- 3.1.3. Predictive value of morphological markers of Larix decidua on indueibility of Picea glauca.- 3.1.4. Megagametophyte position in Larix deciduas.- 4. Discussion.- Production of Haploid Plantlets in Cultures of Unpolinated Ovules of Hevea Brasiliensis Muell. ARG.- 0. Abstract.- 1. Introduction.- 2. Materials and Methods.- 2.1. Expiant.- 2.2. Surface sterlization.- 2.3. Excision and inoculation.- 2.4. Culture media.- 2.4.1. Dedifferentiation medium.- 2.4.2. Differentiation medium.- 2.4.3. Plant forming medium.- 2.4.4. Environmental factors.- 2.5. Cytological procedures.- 3. Results.- 4. Discussion.- Somatic Embryogenesis in Tissue Cultures of Walnut (Juglans Nigra, J. Major and Hybrids J. Nigra X J. Regia).- Abstract.- 1. Introduction.- 2. Material and Methods.- 3. Results and Discussion.- In Vitro Embryogenic Callus Formation in Chimonanthus.- Plant Regeneration of Horse Chestnut by in Vitro Culture.- Genetic Transformation.- A Model System for Gene Transfer in Conifers: European Larch and Agrobacterium.- 1. Abstract.- 2. Introduction.- 3. Micropropagation.- 4. Gene Transfer.- 5. Potential for Genetic Improvement.- Regeneration and Transformation of Apple Plants Using Wild-Type and Engineered Plasmids in Agrobacterium Spp..- Abstract.- 1. Introduction.- 2. Procedure.- 2.1. Materials and methods.- 2.1.1. Micropropagation and regeneration.- 2.1.2. Transformation procedures.- 2.2. Statistical treatments.- 3. Results and Discussion.- 3.1. Regeneration from complex expiants — somaclonal variation.- 3.2. Transformation with Agrobacterium spp..- 3.2.1. Agrobacterium tumefaciens — wild type plasmids.- 3.2.2. Agrobacterium tumefaciens — disarmed engineered plasmids — binary vectors.- 3.2.3. Agrobacterium rhizogenes co-culture.- 3.2.4. Shoot inoculation.- Expression of an Herbicide Tolerance Gene in Young Plants of a Transgenic Hybrid Poplar Clone.- Abstract.- 1. Introduction.- 2. Materials and Methods.- 2.1. Genetic transformation.- 2.2. In vitro propagation.- 2.3. Roundup spray tests.- 2.4. Agrbacterium assay.- 3. Results.- 3.1. Roundup spray tests.- 3.2. Agrobacterium assay.- 4. Discussion.- Transformation of Hybrid Populus Tremula X P. Alba by Agrobacterium Tumefaciens.- Gene Transfer in Woody Plants: Perspectives and Limitations.- 0. Abstract.- 1. Introduction.- 2. Hybridization.- 2.1. Backcross.- 3. Fusion of Protoplasts.- 4. Agrobacterium Plasmid-Vector System.- 4.1. Biology.- 4.1.1. The Ti plasmid.- 4.1.2. The genes in T-DNA.- 4.1.3. The virulence region.- 4.1.4. The T-DNA borders.- 4.2. Vectors for gene transfer.- 4.2.1. Selectable marker genes.- 5. Transformation in Tree Species.- 5.1. Tumor formation and growth autonomy.- 5.2. Gene transfer with selectable markers.- 6. Transfer of Foreign Genes Without Agrobacterium Mediation.- 6.1. The delivery system.- 6.2. Direct gene transfer into protoplasts.- 6.3. Direct injection of DNA.- 6.3.1. Microinjection.- 6.3.2. Injection into plants.- 7. Genetics of Transgenic Plants.- 7.1. Inheritance of selectable markers.- 7.2. Somatoclonal variation.- 8. Perspectives and Limitations.- Genetic Control of Morphogenesis.- Somatic Cell Genetic Research in Forestry: Integration of Cytogenetics, Tissue Culture, and Molecular Genetics.- Abstract.- 1. Introduction.- 2. Review.- 2.1. Somatic cell hybridization.- 2.2. Chromosome- and microcell-mediated gene transfer.- 2.3. Flow cytogenetics.- 3. Discussion.- 3.1. Gene mapping.- 3.1.1. Biochemical markers and genetic probes.- 3.1.2. Restriction fragment, length polymorphisms (RFLP).- 3.1.3. Saturated linkage maps.- 3.2. Somatic cell genetics and tree improvement.- 4. Concluding Remarks.- Differential Norms of Reaction in Tissue Culture of Birch.- Abstract.- 1. Introduction.- 2. Material.- 3. Methods.- 4. Characters.- 5. Model.- 6. Results.- 7. Discussion.- Determination of Plantlet Regeneration Capacity of Selected Aspen Clones in Vitro.- 0. Abstract.- 1. Introduction.- 2. Material and Methods.- 2.1. Culture of bud meristems.- 2.2. Statistical analysis.- 3. Results.- 3.1. Response of MS to BA-treatments.- 3.2. Response of MS to families and BA-treatments.- 3.3. Correlation of MS induction with other morphological and physiological traits.- 4. Discussion.- 4.1. Optimal BA concentration for MS induction.- 4.2. Differential response of families to BA treatments.- 4.3. Correlation between MS and other traits.- 4.4. Aging and micropropagation.- 4.5. Approval and release of clones into practice.- Suspension Culture of Dipterocarp Shorea Roxburghii G. Don..- Abstract.- 1. Introduction.- 2. Materials and Methods.- 2.1. Cell culture.- 2.2. Stock culture.- 2.3. Growth curves.- 2.4. Plating on solid medium.- 2.5. Observations.- 3. Results and Discussion.- 3.1 Establishment and growth of suspension cultures.- 3.2. Plating suspension on agar medium.- 3.3. Observation on cells in suspension.- 4. Conclusions.- Isozyme Analysis of Micropropagated Betula Pendula Roth..- 1. Introduction.- 2. Procedure.- 2.1. Materials and methods.- 3. Results.- 4. Discussion.- Tissue Culture Studies of Mahogany Tree, Sweitenia.- 1. Abstract.- 2. Introduction.- 3. Materials and Methods.- 3.1. Seed material.- 3.2. Methods.- 3.2.1. Callus initiation.- 3.2.2. Culture media.- 3.2.3. Micropropagation.- 4. Results.- 4.1. General growth response.- 4.2. Response of cotyledons.- 4.3. Response of stem segments and leaf tissue.- 4.4. Progress in micropropagation.- 5. Conclusions and Prospects.- Attempts to Micropropagate Mature Larix Decidua Mill..- Abstract.- 1. Introduction.- 2. Materials and Methods.- 2.1. Collection and storage.- 2.1.1. Female cones at around the time of meiosis.- 2.1.2. Vegetative and sexual buds.- 2.2. Surface sterlization and excision.- 2.2.1. Female cones at about the time of meiosis.- 2.2.2. Vegetative and sexual buds.- 2.3. Media and culture conditions.- 3. Results.- 3.1. Description of shoot and root development.- 3.1.1. Female cones at about the time of meiosis.- 3.1.2. Vegetative and sexual buds.- 3.2. The effect of some experimental variables.- 3.2.1. Recording of data.- 3.2.2. Experiments with female cones collected when at or near meiosis.- 3.2.3. Experiments with vegetative and sexual buds.- 4. Discussion.- Protoplast Culture of Woody Rosaceae and a Comparison to Herbaceous Rosaceae.- 0. Abstract.- 1. Introduction.- 2. Materials and Methods.- 3. Results and Discussion.- Differential Growth Response of Aspen Clones Stored at Sub-Zero Temperatures.- 0. Abstract.- 1. Introduction.- 2. Materials and Methods.- 2.1. Species and storage temperatures.- 2.1.1. Storage of twigs.- 2.1.2. Storage of buds.- 2.1.3. In vitro culture.- 3. Results and Discussion.- 3.1. Storage of twigs.- 3.1.1. Storage for one month.- 3.1.2. Storage for one year.- 3.1.3. Storage for two years.- 3.2. Storage of dormant buds.- 3.2.1. Storage for five weeks.- 3.2.2. Storage for one year.- 3.2.3. Storage for two years.- In Vitro Screening, Somaclonal Selection, Testing and Deployment.- Screening for Resistance to Hypoxylon Mammatum in Populus Tremuloides Callus and Micropropagated Plantlets.- Increased Herbicide Tolerance of in Vitro Selected Hybrid Poplar.- Abstract.- 1. Introduction.- 2. Materials and Methods.- 2.1. Plant material.- 2.2. Establishment of continuous shoot cultures.- 2.3. Optimization of adventitious shoot production.- 2.4. Somaclonal variant selection.- 2.5. Determination of herbicide lethality.- 2.6. Rechallenge of putative herbicice tolerant somaclones.- 2.7. Preliminary ex vitro testing of somaclonal variants.- 3. Results.- 4. Discussion.- The Occurrence of Endogenous Bacteria in Birch Shoot Cultures.- 1. Introduction.- 2. Procedure.- 2.1. Materials and methods.- 3. Results.- 4. Discussion.- Establishment of a Sterile Foam Cultivation System: Elimination of Formaldehyde.- Abstract.- 1. Introduction.- 2. Procedure.- 2.1. Equipment and materials.- 2.2. Preparation of liquid nutrient solution.- 2.3. Preparation of the foam cultivation system and foam pretreatment.- 2.4. Evaluation of effective formaldehyde elimination.- 2.5. Evaluation of pH shift.- 3. Results.- 4. Application.- 4.1. Cultivation of shoot tip cultures with pretreated foam.- Testing and Deployment of Brave New Plantlings.- 0. Abstract.- 1. Introduction.- 2. Problems with Deployment.- 2.1. Forestry is a conservative profession, and rightly so.- 2.2. Conservative foresters demand genetic diversity.- 3. Problems with Testing.- 3.1. Time.- 3.2. Total performance.- 3.3. Number and characteristics of test sites.- 3.4. Propagule comparability.- 4. Plant Material Used during Fundamental Research and Technique Deployment.- 5. Response to a Questionaire.- 5.1. Testing and deployment.- 5.2. Genetic identification.- 5.3. Genetic diversity.- 5.4. Whole-tree collaborators.- 5.5. Respondents’ organizations.- 6. A Few Suggestions.- 6.1. Provenance.- 6.2. Pedigree.- 6.3. Clones.- 6.4. The ideal.- 6.5. Minority mixes.- 7. Some Worries about Professional Infrastructure.- Rules Governing the Release of Forest Reproductive Material Derived by in Vitro-Culture.- 0. Abstract.- 1. Introduction.- 2. The Principle of Approval.- 3. The Problem of Approving in Vitro-Culture Derived Plant Material and Solution Proposed.- 4. Rules for The Marketing of Multiclonal Mixtures.- 5. Outlook.- Guidelines for Research and Development in Biotechnology.- Abstract.- 1. Introduction.- 2. Philosophy of the Research Guidelines.- 3. Review Process.- 4. Containment.- 5. Release.- 6. Conclusion.