Preface. Microcavities and photonic bandgaps: A summary of physics and applications; C. Weisbuch, J.G. Rarity. Planar Semiconductor Microcavities. Cavity-polaritons in semiconductor microcavities; R.P. Stanley, et al. Critical issues on the strong coupling régime in semiconductor microcavities; R. Houdré, et al. Normal-mode coupling in planar semiconductor microcavities; T.R. Nelson, Jet al. Dynamical studies of cavity polaritons in semiconductor microcavities: Pump probe measurements and time-resolved photoluminescence; J.P. Doran, et al. Spontaneous emission dynamics in planar semiconductor microcavities; I. Abram, et al. Magnetic and electric field effects in semiconductor quantum microcavity structures; T.A. Fisher, et al. Time resolved photoluminescence from a semiconductor microcavity: Temperature dependence and role of leaky modes; F. Tassone, et al. Order of magnitude enhanced spontaneous emission from room-temperature bulk GaAs; R. Jin, et al. Optical double-resonant Raman scattering in semiconductor planar microcavities; A. Fainstein, et al. Second harmonic generation in a metal-semiconductor-metal monolithic cavity; V. Berger. Photonic Bandgap Materials, and Novel Structures. Bandgap engineering of 3-D photonic crystals operating at optical wavelengths; V. Arbet-Engels, et al. Microcavities in photonic crystals; P.R. Villeneuve, et al. Electromagnetic study of photonic band structures and Anderson localization; D. Maystre, et al. Localization of light in 2D random media; A. Orlowski, et al. Strategies for the fabrication of photonic microstructures in semiconductors; R. M. De La Rue, T.F. Krauss. GaInAsP/InP 2-dimensional photonic crystals; T. Baba, T. Matsuzaki. Bound modes oftwo-dimensional photonic crystal waveguides; P.St.J. Russel, et al. InAs quantum boxes: Active probes for air/GaAs photonic bandgap microstructures; J.M. Gerard, et al. Spontaneous emission and nonlinear effects in photonic band gap materials; M.D. Tocci, et al. Guided modes in a 2D photonic-band-gap material: Advantages over the 1D case; H. Benisty. Photonic atoms: Enhanced light coupling; A. Serpengüzel, et al. Photonic surfaces; W.L. Barnes, et al. The opal-semiconductor system as a possible photonic bandgap material; S.G. Romanov, C.M. Sotomayor Torres. Partial photonic bandgaps in Bragg directions in polystyrene colloidal crystals; C.E. Cameron, et al. Characterising whispering-gallery modes in microspheres using a near-field probe; J.C. Knight, et al. Numerical method for calculating spontaneous emission rate near a surface using Green's functions; F. Wijnands, et al. Microcavity effects in Er3+-doped optical fibres: Alteration of spontaneous emission from 2D fibre microcavities; P.M.W. Skovgaard, et al. Decay time and spectrum of rare earth fluorescence in silvered microfibers; H. Zbinden, et al. Device Applications. Commercial light emitting diode technology: Status, trends, and possible future performance; M.G. Craford. Resonant cavity LED's: Design, fabrication and analysis of high efficiency LED's; H. De Neve, et al. High efficiency resonant cavity LED's; N.E.J. Hunt, E.F. Schubert. II-VI resonant cavity light emitting diodes for the mid-infrared; J. Bleuse, et al. Carrier and photon dynamics in semiconductor microdisk lasers; U. Mohideen, R.E. Slusher. Spontaneous emission control in long wavelength semiconductor micropost lasers; A. Karlsson, et al. Vertical-cavity surface-emittin