Renormalized Quantum Field Theory
Samenvatting
'Et moi. ...• Ii j'avait su CClIIIIIIaIt CD 1'CVCDir, ODe scmcc matbcmatK:s bas I'CIIdcRd !be je D', semis paiDt ~. humaD mcc. It bas put common sease bact Jules Vcmc 'WIIcR it bdoDp, 011 !be topmost sbdl JlCXt 10 !be dully c:uista' t.bdlcd 'cIiIc:arded DOlI- The series is diverpt; therefore we may be sense'. Eric T. BcII able 10 do sometbiD& with it O. Heavilide Mathematics is a tool for thought. A highly ncceuary tool in a world where both feedback and non- 1inearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the l'Iison d'etre of this series.
Specificaties
Inhoudsopgave
{\bar m^{\left( {\rm{a}} \right)}}
$$. Light-Ray Fields.- 4.3. The Light-Cone Theorem.- 4.4. An Example. General Discussion. A Massless Case.- 5. Equations for Composite Fields.- 5.1. Equations of Motion for the Interpolating Field.- 5.2. Equations for Higher Composite Fields.- 5.3. The Proof of Relations (273) and (276).- 5.4. Renorm-Group Equations and Callan-Symanzik Equations.- 6. Equations for Regularized Green Functions.- 6.1. Relation of Renormalization Constants to Green Functions.- 6.2. Relations of Green Functions to Derivatives of the Renormalization Constants.- V. Renormalization of Yang-Mills Theories.- 1. Classical Theory and Quantization.- 1.1. Classical Yang-Mills Fields.- 1.2. Quantization.- 1.3. Fields of Matter. Abelian Theory.- 2. Gauge Invariance and Invariant Renormalizability.- 2.1. Abelian Theories. Ward Identities.- 2.2. Non-Abelian Yang-Mills Theories. BRST Symmetry. Slavnov Identities.- 2.3. A Linear Condition for the Gauge Invariance of Non-Abelian Yang-Mills Theories.- 2.4. The Structure of Subtractions.- 2.5. Invariant Renormalizability of the Yang-Mills Theory.- 3. Invariant Regularization and invariant Renormalization Schemes.- 3.1. Preliminary Discussion.- 3.2. Scalar Electrodynamics. Recipes for Regularization.- 3.3. Scalar Electrodynamics. Arguments in Favour of the Recipe.- 3.4. Spinor Electrodynamics. Recipes for Regularization.- 3.5. Spinor Electrodynamics. Argumentation.- 3.6. Examples and Remarks.- 3.7. Non-Abelian Yang-Mills Theories.- 3.8. An Example: Gluon Polarization Operator. Arguments.- 4. Anomalies.- 4.1. Is It Always Possible to Retain a Classical Symmetry in a Quantum Field Theory?.- 4.2. Main Statements.- 4.3. Heuristic Check of Ward Identities (Momentum Representation).- 4.4. The Triangle Diagram in the ?-Representation.- 4.5. Ward Identities.- Appendix. On Methods of Studying Deep-Inelastic Scattering.- A.1. Deep-Inelastic Scattering.- A.2. The Traditional Approach to Deep-Inelastic Scattering.- A.3. The Non-Local Light-Cone Expansion as the Basic Tool to Study Deep-Inelastic Scattering.- A Guide to Literature.- References.

