, , , e.a.

Asymptotics in Dynamics, Geometry and PDEs; Generalized Borel Summation

Proceedings of the conference held in CRM Pisa, 12-16 October 2009, Vol. I

Specificaties
Paperback, 450 blz. | Engels
Scuola Normale Superiore | 1e druk, 2011
ISBN13: 9788876423741
Rubricering
Scuola Normale Superiore 1e druk, 2011 9788876423741
Verwachte levertijd ongeveer 8 werkdagen

Samenvatting

These are the proceedings of a one-week international conference centered on asymptotic analysis and its applications. They contain major contributions dealing with
- mathematical physics: PT symmetry, perturbative quantum field theory, WKB analysis,
- local dynamics: parabolic systems, small denominator questions,
- new aspects in mould calculus, with related combinatorial Hopf algebras and application to multizeta values,
- a new family of resurgent functions related to knot theory.

Specificaties

ISBN13:9788876423741
Taal:Engels
Bindwijze:paperback
Aantal pagina's:450
Uitgever:Scuola Normale Superiore
Druk:1

Inhoudsopgave

C. M. Bender, D. W. Hook, K. S. Kooner: Complex Elliptic Pendulum.- F. Bracci: Parabolic attitude.- J. Ecalle, S. Sharma: Power series with sum-product Taylor coefficients and their resurgence algebra.- J. Raissy: Brjuno conditions for linearization in presence of resonance.- J.-Y. Thibon: Noncommutative symmetric functions and combinatorial Hopf algebras.- C. Bogner, S. Weinzierl: Feynman graphs in perturbative quantum field theory.- A. J. Corcho, F. Linares, C. Matheus: Multilinear estimates for the 2D and 3D Zakharov-Rubenchik systems.-
J. Ecalle: The flexion structure and dimorphy: flexion units, singulators, generators, and the enumeration of multizeta irreducible.- J. Ecalle: (title to follow).- S. Kamimoto, T. Kawai, T. Koike, Y. Takei: On a Schrödinger equation with a merging pair of a simple pole and a simple turning point – Alien calculus of WKB solutions through microlocal analysis.- R. Schäfke: (title to follow).

Rubrieken

    Personen

      Trefwoorden

        Asymptotics in Dynamics, Geometry and PDEs; Generalized Borel Summation