1. Introduction.- 1.1 Near-Field Optics and Related Technologies.- 1.2 History of Near-Field Optics and Related Technologies.- 1.3 Basic Features of an Optical Near Field.- 1.3.1 Optically “Near” System.- 1.3.2 Effective Field and Evanescent Field.- 1.3.3 Near-Field Detection of Effective Fields.- 1.3.4 Role of a Probe Tip.- 1.4 Building Blocks of Near-Field Optical Systems.- 1.5 Comments on the Theory of Near-Field Optics.- 1.6 Composition of This Book.- References.- 2. Principles of the Probe.- 2.1 Basic Probe.- 2.1.1 Optical Fiber Probe for the Near-Field Optical Microscope.- 2.1.2 Principle of the Imaging Mechanism: Dipole-Dipole Interaction.- 2.1.3 Resolution.- 2.1.4 Contrast.- 2.1.5 Sensitivity.- 2.2 Functional Probe: New Contrast Mechanisms.- 2.2.1 Signal Conversion by Functional Probes.- 2.2.2 Absorption and Emission: Radiative and Nonradiative Energy Transfer.- 2.2.3 Resonance, Nonlinearity, and Other Mechanisms.- References.- 3. Probe Fabrication.- 3.1 Introduction.- 3.2 Selective Etching of a Silica Fiber Composed of a Core and Cladding.- 3.2.1 Geometrical Model of Selective Etching.- 3.2.2 Pure Silica Fiber with a Fluorine Doped Cladding.- 3.2.3 GeO2 Doped Fiber.- 3.2.4 Tapered Fibers for Optical Transmission Systems.- 3.3 Selective Etching of a Dispersion Compensating Fiber.- 3.3.1 Shoulder-Shaped Probe.- 3.3.1.1 Shoulder-Shaped Probe with a Controlled Cladding Diameter.- 3.3.1.2 Shoulder-Shaped Probe with a Nanometric Flattened Apex.- 3.3.1.3 Double-Tapered Probe.- 3.3.2 Pencil-Shaped Probe.- 3.3.2.1 Pencil-Shaped Probe with an Ultra-Small Cone Angle.- 3.3.2.2 Pencil-Shaped Probe with a Nanometric Apex Diameter.- 3.4 Protrusion-Type Probe.- 3.4.1 Selective Resin Coating Method.- 3.4.2 Chemical Polishing Method.- 3.5 Hybrid Selective Etching of a Double-Cladding Fiber.- 3.5.1 Triple-Tapered Probe.- 3.5.2 Geometrical Model of Selective Etching of a Double-Cladding Fiber.- 3.5.3 Application-Oriented Probes: Pencil-Shaped Probe and Triple-Tapered Probe.- 3.6 Probe for Ultraviolet NOM Applications.- 3.6.1 UV Single-Tapered Probe.- 3.6.2 UV Triple-Tapered Probe.- 3.6.2.1 Advanced Method Based on Hybrid Selective Etching of a Double Core Fiber.- 3.6.2.2 Geometrical Model.- References.- 4. High-Throughput Probes.- 4.1 Introduction.- 4.2 Excitation of the HE-Plasmon Mode.- 4.2.1 Mode Analysis.- 4.2.2 Edged Probes for Exciting the HE-Plasmon Mode.- 4.3 Multiple-Tapered Probes.- 4.3.1 Double-Tapered Probe.- 4.3.2 Triple-Tapered Probe.- References.- 5. Functional Probes.- 5.1 Introduction.- 5.2 Methods of Fixation.- 5.3 Selecting a Functional Material.- 5.4 Probe Characteristics and Applications.- 5.4.1 Dye-Fixed Probes.- 5.4.2 Chemical Sensing Probes.- 5.5 Future Directions.- References.- 6. Instrumentation of Near-Field Optical Microscopy.- 6.1 Operation Modes of NOM.- 6.1.1 c-Mode NOM.- 6.1.2 i-Mode NOM.- 6.1.3 Comparative Features of Modes of NOM.- 6.2 Scanning Control Modes.- 6.2.1 Constant-height Mode.- 6.2.2 Constant-Distance Mode.- 6.2.2.1 Shear-force Feed Back.- 6.2.2.2 Optical Near-Field Intensity Feedback.- References.- 7. Basic Features of Optical Near-Field and Imaging.- 7.1 Resolution Characteristics.- 7.1.1 Longitudinal Resolution.- 7.1.2 Lateral Resolution.- 7.2 Factors Influencing Resolution.- 7.2.1 Influence of Probe Parameters.- 7.2.2 Dependence on Sample-Probe Separation.- 7.3 Polarization Dependence.- 7.3.1 Influence of Polarization on the Images of an Ultrasmooth Sapphire Surface.- 7.3.2 Influence of Polarization on the Images of LiNbO3 Nanocrystals.- References.- 8. Imaging Biological Specimens.- 8.1 Introduction.- 8.2 Observation of Flagellar Filaments by c-Mode NOM.- 8.2.1 Imaging in Air.- 8.2.2 Imaging in Water.- 8.3 Observation of Subcellular Structures of Neurons by i-Mode NOM.- 8.3.1 Imaging in Air Under Shear-Force Feedback.- 8.3.1.1 Imaging of Neurons Without Dye Labeling.- 8.3.1.2 Imaging of Neurons Labeled with Toluidine Blue.- 8.3.2 Imaging in Water Under Optical Near-Field Intensity Feedback.- 8.3.2.1 Imaging in Air.- 8.3.2.2 Imaging in PBS.- 8.4 Imaging of Microtubules by c-Mode NOM.- 8.5 Imaging of Fluorescent-Labeled Biospecimens.- 8.6 Imaging DNA Molecules by Optical Near-Field Intensity Feedback.- References.- 9. Diagnosing Semiconductor Nano-Materials and Devices.- 9.1 Fundamental Aspects of Near-Field Study of Semiconductors.- 9.1.1 Near-Field Spectroscopy of Semiconductors.- 9.1.2 Optical Near Field Generated by a Small Aperture and Its Interaction with Semiconductors.- 9.1.3 Operation in Illumination-Collection Hybrid Mode.- 9.2.- 9.2.1 Sample and Experimental Set-up.- 9.2.2 Spatially Resolved Photoluminescence Spectroscopy.- 9.2.3 Two-Dimensional Mapping of Photoluminescence Intensity.- 9.2.4 Collection-Mode Imaging of Electroluminescence.- 9.2.5 Multiwavelength Photocurrent Spectroscopy.- 9.3 Low-Temperature Single Quantum Dot Spectroscopy.- 9.3.1 Near-field single quantum dot spectroscopy.- 9.3.2 Low-Temperature NOM.- 9.3.3 Sample and Experimental Set-up.- 9.3.4 Fundamental Performance of the System.- 9.3.5 Physical Insight of Single Quantum Dot Photoluminescence.- 9.3.6 Observation of Other Types of Quantum Dots.- 9.4 Ultraviolet Spectroscopy of Polysilane Molecules.- 9.4.1 Polysilanes.- 9.4.2 Near-Field Ultraviolet Spectroscopy.- 9.4.3 Imaging and Spectroscopy of Polysilane Aggregates.- 9.5 Raman Spectroscopy of Semiconductors.- 9.5.1 Near-Field Raman Spectroscopy.- 9.5.2 Raman Imaging and Spectroscopy of Polydiacetylene and Si.- 9.6 Diagnostics of Al Stripes in an Integrated Circuit.- 9.6.1 Principle of Detection.- 9.6.2 Heating with a Metallized Probe.- 9.6.3 Heating by an Apertured Probe.- References.- 10. Toward Nano-Photonic Devices.- 10.1 Introduction.- 10.2 Use of Surface Plasmons.- 10.2.1 Principles of Surface Plasmons.- 10.2.2 Observation of Surface Plasmons.- 10.2.3 Toward Two-Dimensional Devices.- 10.2.4 Toward Three-Dimensional Devices.- 10.2.5 A Protruded Metallized Probe with an Aperture.- 10.3 Application to High-Density Optical Memory.- 10.3.1 Problems to Be Solved.- 10.3.2 Approaches to Solving the Problems.- 10.3.2.1 Structure of the Read-Out Head.- 10.3.2.2 Storage Probe Array.- 10.3.2.3 Track-less Read-out.- 10.3.3 Fabrication of a Two-Dimensional Planar Probe Array.- References.- 11. Near-Field Optical Atom Manipulation: Toward Atom Photonics.- 11.1 Introduction.- 11.1.1 Control of Gaseous Atoms: From Far Field to Near Field.- 11.1.2 Dipole Force.- 11.1.3 Atomic Quantum Sheets: Atom Reflection Using a Planar Optical Near Field.- 11.1.4 Atomic Quantum Wires: Atom Guidance Using a Cylindrical Optical Near Field.- 11.1.5 Atomic Quantum Dots: Atom Manipulation Using a Localized Optical Near Field.- 11.2 Cylindrical Optical Near Field for Atomic Quantum Wires.- 11.2.1 Exact Light-Field Modes in Hollow Optical Fibers.- 11.2.2 Approximate Light-Field Modes in Hollow Optical Fibers.- 11.2.3 Field Intensity of the LP Modes.- 11.3 Atomic Quantum Wires.- 11.3.1 Near-Field Optical Potential.- 11.3.2 Laser Spectroscopy of Guided Atoms with Two-Step Photoionization.- 11.3.3 Observation of Cavity QED Effects in a Dielectric Cylinder.- 11.3.4 Atomic Quantum Wires with a Light Coupled Sideways.- 11.4 Optically Controlled Atomic Deposition.- 11.4.1 Spatial Distribution of Guided Atoms.- 11.4.2 Precise Control of Deposition Rate.- 11.4.3 In-line Spatial Isotope Separation.- 11.5 Near-Field Optical Atomic Funnels.- 11.5.1 Atomic Funnel with Atomic Quantum Sheet.- 11.5.2 Sisyphus Cooling Induced by Optical Near Field.- 11.5.3 Monte Carlo Simulations.- 11.6 Atomic Quantum Dots.- 11.6.1 Phenomenological Approach to the Interaction Between Atoms and the Localized Optical Near Field.- 11.6.2 Atom Deflection.- 11.6.3 Atom Trap with a Sharpened Optical Fiber.- 11.6.4 Three-Dimensional Atom Trap.- 11.7 Future Outlook.- References.- 12. Related Theories.- 12.1 Comparison of Theoretical Approaches.- 12.2 Semi-microscopic and Microscopic Approaches.- 12.2.1 Basic Equations.- 12.2.2 Example of an Evanescent Field.- 12.2.3 Direct and Indirect Field Propagators.- 12.2.4 Electric Susceptibility of Matter.- 12.3 Numerical Examples.- 12.3.1 Weak vs. Strong Coupling.- 12.3.2 Near-Field- and Far-Field-Propagating Signals.- 12.3.3 Scanning Methods.- 12.3.4 Possibility of Spin-Polarization Detection.- 12.4 Effective Field and Massive Virtual Photon Model.- 12.5 Future Direction.- References.