0. Introduction.- 1. Lipschitz spaces and BMO.- 2. Atomic Hp spaces.- 3. Operators on Hp.- 4. Atomic decomposition from grand maximal functions.- 5. Atomic decomposition from S functions.- 6. Hardy-Littlewood-Fefferman-Stein type inequalities, 1.- 7. Hardy-Littlewood-Fefferman-Stein type inequalities, 2.- 8*Hardy-Littlewood-Fefferman-Stein type inequalities, 3.- 9. Grand maximal functions from radial maximal functions.- 10* S-functions from g-functions.- 11. Good ? inequalities for nontangential maximal functions and S-functions of harmonic functions.- 14. Subharmonicity, 1.- 15. Subharmonicity, 2.- 16. Preliminaries for characterizations of Hp in terms of Fourier multipliers.- 17. Characterization of Hp in terms of Riesz transforms.- 18. Other results on the characterization of Hp in terms of Fourier multipliers.- 19. Fefferman’s original proof of.- 20. Varopoulos’s proof of the above inequality.- 21. The Fefferman-Stein decomposition of BMO.- 22. A constructive proof of the Fefferman-Stein decomposition of BMO.- 23. Vector-valued unimodular BMO functions.- 24. Extension of the Fefferman-Stein decomposition of BMO, 1.- 25. Characterization of H1 in terms of Fourier multipliers.- 26. Extension of the Fefferman-Stein decomposition of BMO, 2.- 27. Characterization of Hp in terms of Fourier multipliers.- 28. The one-dimensional case.- References.