Conjectures in Arithmetic Algebraic Geometry

A Survey

Specificaties
Paperback, 246 blz. | Engels
Vieweg+Teubner Verlag | 2e druk, 2013
ISBN13: 9783663095071
Rubricering
Vieweg+Teubner Verlag 2e druk, 2013 9783663095071
Onderdeel van serie Aspects of Mathematics
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

In this expository text we sketch some interrelations between several famous conjectures in number theory and algebraic geometry that have intrigued math­ ematicians for a long period of time. Starting from Fermat's Last Theorem one is naturally led to introduce L­ functions, the main, motivation being the calculation of class numbers. In partic­ ular, Kummer showed that the class numbers of cyclotomic fields play a decisive role in the corroboration of Fermat's Last Theorem for a large class of exponents. Before Kummer, Dirichlet had already successfully applied his L-functions to the proof of the theorem on arithmetic progressions. Another prominent appearance of an L-function is Riemann's paper where the now famous Riemann Hypothesis was stated. In short, nineteenth century number theory showed that much, if not all, of number theory is reflected by properties of L-functions. Twentieth century number theory, class field theory and algebraic geome­ try only strengthen the nineteenth century number theorists's view. We just mention the work of E. H~cke, E. Artin, A. Weil and A. Grothendieck with his collaborators. Heeke generalized Dirichlet's L-functions to obtain results on the distribution of primes in number fields. Artin introduced his L-functions as a non-abelian generalization of Dirichlet's L-functions with a generalization of class field theory to non-abelian Galois extensions of number fields in mind.

Specificaties

ISBN13:9783663095071
Taal:Engels
Bindwijze:paperback
Aantal pagina's:246
Druk:2

Inhoudsopgave

1 The zero-dimensional case: number fields.- 2 The one-dimensional case: elliptic curves.- 3 The general formalism of L-functions, Deligne cohomology and Poincaré duality theories.- 4 Riemann-Roch, K-theory and motivic cohomology.- 5 Regulators, Deligne’s conjecture and Beilinson’s first conjecture.- 6 Beilinson’s second conjecture.- 7 Arithmetic intersections and Beilinson’s third conjecture.- 8 Absolute Hodge cohomology, Hodge and Tate conjectures and Abel-Jacobi maps.- 9 Mixed realizations, mixed motives and Hodge and Tate conjectures for singular varieties.- 10 Examples and Results.- 11 The Bloch-Kato conjecture.

Rubrieken

    Personen

      Trefwoorden

        Conjectures in Arithmetic Algebraic Geometry