1. Introduction.- 2. Principles of Algol translation.- 2.1. Basic linguistic definitions.- 2.2. The Backus normal form.- 2.3. The analyzing process.- 2.4. The method of the “Klammergebirge”.- 2.5. Recursive sequential methods and push down lists.- 2.5. 1. The decoding matrix.- 2.5.2. Precedence rules and orders.- 2.6. Example for the use of two push down lists and of precedence rules.- 2.7. The concept of recursive translation.- 2.8. Organization of the translator.- 3. Languages involved in the translation process.- 3.1. Source language.- 3.2. Target language.- 3.3. Meta-language for describing the translator.- 4. Correspondence between elements of source and target language.- 4.1. Declarations in general.- 4.2. Declaration of variables and arrays and data storage allocation in the main program.- 4.2.1. Simple variables.- 4.2.2. Arrays and their information vectors.- 4.2.2.1. Static arrays.- 4.2.2.2. Dynamic arrays.- 4.3. Handling of types.- 4.4. Assignment statements.- 4.4.1. Simple arithmetic variables.- 4.4.2. Name variables, function designators, and type procedure identifiers.- 4.4.3. Subscripted variables.- 4.5. Boolean expressions.- 4.5.1. Truth values.- 4.5.2. Relations.- 4.5.3. Boolean operators.- 4.6. Conditional statements and expressions.- 4.6.1. The if clause.- 4.6.2. Conditional statements.- 4.6.3. Conditional expressions.- 4.7. For statements.- 4.8. Go to statement and switch declaration.- 4.9. Procedures and dynamic storage.- 4.9.1. Variables in procedures.- 4.9.2. Dynamic storage.- 4.10. Procedure calls and declarations.- 4.10.1. Procedure calls.- 4.10.1.1. Actual parameters in procedure calls.- 4.10.1.2. Procedure calls after transformations of actual parameters.- 4.10.1.3. Name calls.- 4.10.2. Procedure declarations.- 4.10.2.1. Value listed formal variables.- 4.10.2.2. Formal arrays.- 4.10.2.3. Function procedures.- 4.10.2.4. Normal procedure exit.- 5. Recursive address calculation.- 5.1. Introduction.- 5.2. Assumptions necessary for the use of recursive address calculation.- 5.3. Use of recursive address calculation for one loop.- 5.3.1. Method I: Difference method.- 5.3.2. Method II: Decomposition method.- 5.4. Nested loops.- 5.4.1. Method I: Difference method.- 5.4.2. Method II: Decomposition method.- 5.4.3. An example.- 5.4.3.1. Difference method.- 5.4.3.2. Decomposition method.- 5.5. Loops with more than one list element.- 5.6. Further optimization possibilities.- 5.6.1. Identification of subscripted variables.- 5.6.2. Generated variables.- 5.6.3. Use of index registers.- 5.6.4. Program organization.- 5.6.5. The example of 5.4.3.- 5.6.5.1. Difference method.- 5.6.5.2. Decomposition method.- 6. Run time organization.- 6.1. The instruction storage allocation.- 6.2. The instruction procedure call.- 6.3. The instruction formal procedure call.- 6.4. The instruction normal procedure exit.- 6.5. The instruction jump to.- 6.6. The instruction formal procedure exit.- 6.7. The instructions name address and name call.- 6.8. The instruction name procedure exit.- 7. Model translator. Description.- 7.1. Introduction.- 7.2. Pass 1. The preparatory pass.- 7.2.1. Input.- 7.2.1.1. Delimiters.- 7.2.1.2. Entities.- 7.2.2. Output.- 7.2.2.1. The modified input program ?1.- 7.2.2.2. The identifier list.- 7.2.2.3. The for list.- 7.3. Pass 2. The implementation of recursive address calculation.- 7.3.1. Output.- 7.3.1.1. Program.- 7.3.1.2. The identifier list.- 7.3.2. Lists used in pass 2.- 7.3.3. Program survey.- 7.4. Pass 3. Decomposition and production of target program.- 7.4.1. Output.- 7.4.2. Program survey.- 7.5. Editorial functions.- 7.5.1. Syntax checking.- 7.6. Run time system. The target language program interpreter.- 8. Algol 60 model translator. Formal part.- Pass 1: preparatory pass.- Pass 2: recursive address calculation pass.- Pass 3: decomposition and generation pass.- Check routine: check procedure calls and substitutions of formal parameters by actuals.- Check routine: check agreeability of actual parameter and specification.- Run time system: target language program interpreter.- START TRANSLATION.- Appendix: Correspondence matrix for actual and formal parameters.