,

Chemistry and Physics of Solid Surfaces VIII

Specificaties
Paperback, 464 blz. | Engels
Springer Berlin Heidelberg | 0e druk, 2011
ISBN13: 9783642757648
Rubricering
Springer Berlin Heidelberg 0e druk, 2011 9783642757648
€ 60,99
Levertijd ongeveer 8 werkdagen

Samenvatting

This volume contains review articles written by the invited speakers at the ninth International Summer Institute in Surface Science (ISISS 1989), held at the Uni­ versity of Wisconsin-Milwaukee in August of 1989. During the course of ISISS, invited speakers, all internationally recognized experts in the various fields of surface science, present tutorial review lectures. In addition, these experts are asked to write review articles on their lecture topic. Former ISISS speakers serve as advisors concerning the selection of speakers and lecture topics. Emphasis is given to those areas which have not been covered in depth by recent Summer Institutes, as well as to areas which have recently gained in significance and in which important progress has been made. Because of space limitations, no individual volume of Chemistry and Physics of Solid Surfaces can possibly cover the whole area of modern surface science, or even give a complete survey of recent progress in this field. However, an attempt is made to present a balanced overview in the series as a whole. With its comprehensive literature references and extensive subject indices, this series has become a valuable resource for experts and students alike. The collected articles, which stress particularly the gas-solid interface, have been published under the following titles: Surface Science: Recent Progress and Perspectives, Crit. Rev. Solid State Sci.

Specificaties

ISBN13:9783642757648
Taal:Engels
Bindwijze:paperback
Aantal pagina's:464
Uitgever:Springer Berlin Heidelberg
Druk:0

Inhoudsopgave

1. Reactivity of Surfaces.- 1.1 Chemisorbed Phases—Alterations of the Substrate Bonds.- 1.2 Chemical Transformation—Alteration of the Adsorbate Bonds.- 1.3 Nonlinear Dynamics in Surface Reactions.- 1.4 Conclusion.- References.- 2. New Mechanisms for the Activation and Desorption of Molecules at Surfaces.- 2.1 Translational Activation of CH4.- 2.2 Collision Induced Dissociative Chemisorption and Collision Induced Desorption of CH4.- 2.3 New Methods for Activation: New Syntheses.- References.- 3. Photochemistry at Adsorbate-Metal Interfaces: Intra-adsorbate Bond Breaking.- 3.1 General Considerations.- 3.2 Experimental Considerations.- 3.3 Examples.- 3.3.1 Methyl Bromide on Pt{111} and Ag{111}.- 3.3.2 Oxygen on Pt{111}.- 3.3.3 Nitrogen Dioxide on NO-Covered Pd{111}.- 3.4 Prospects.- References.- 4. Desorption Induced by Electronic Transitions.- 4.1 Mechanisms of DIET.- 4.1.1 Background; Desorption of Neutrals.- 4.1.2 Positive Ions.- 4.1.3 Negative Ions.- 4.1.4 Photon Stimulated Desorption; Surface Photochemistry.- 4.1.5 Use of ESD in Surface Structure Determination: ESDIAD.- 4.2 Experimental Procedures for Positive and Negative Ion ESDIAD.- 4.3 DIET Studies of a Model System: PF3 on Ru{0001}.- 4.3.1 ESDIAD of Positive and Negative Ions: Background.- 4.3.2 DIET of PF3.- 4.3.3 Electron- and Photon-Induced Damage to PF3.- 4.4 Summary and Conclusions.- References.- 5. Transition Metal Clusters and Isolated Atoms in Zeolite Cages.- 5.1 Preparation of Encaged Particles.- 5.2 Thermodynamic “Driving Forces” Favoring Locations and Particle Morphology.- 5.3 Mechanisms of Metal Particle Formation.- 5.4 Identification of Isolated Atoms and Electron Deficient Particles.- 5.5 Formation of Bimetallic Particles.- 5.6 Summary and Conclusions.- References.- 6. Studies of Bonding and Reaction on Metal Surfaces Using Second-Harmonic and Sum-Frequency Generation.- 6.1 Second-Harmonic Generation.- 6.1.1 Background.- 6.1.2 Theory.- 6.1.3 Experimental Methods.- 6.1.4 Experimental Results.- 6.1.5 SHG Summary.- 6.2 Sum-Frequency Generation.- 6.2.1 Introduction and Background.- 6.2.2 Theory.- 6.2.3 Experimental Methods.- 6.2.4 Experimental Results.- 6.2.5 SFG Summary.- References.- 7. Surface Physics and Chemistry in High Electric Fields.- 7.1 Electric Fields at Metal Surfaces.- 7.2 Dispersion and Polarization Forces.- 7.3 Field-Induced Chemisorption.- 7.4 Field Evaporation.- 7.5 Thermal Field Desorption.- 7.6 Field-Induced Chemistry.- 7.7 Concluding Remarks.- References.- 8. Chaos in Surface Dynamics.- 8.1 Concepts in Chaos.- 8.2 Examples.- 8.2.1 The Direct Signal.- 8.2.2 Power Spectrum.- 8.2.3 Autocorrelation Functions.- 8.2.4 Poincaré Map/Surface-of-Section.- 8.2.5 Summary.- 8.3 Period Doubling.- 8.3.1 Driven Oscillator.- 8.3.2 Logistic Map.- 8.3.3 Oscillatory Surface Reactions.- 8.4 Hamiltonian Systems.- 8.4.1 Vibrational Spectroscopy.- 8.4.2 Scattering.- References.- 9. Ten Years of Low Energy Positron Diffraction.- 9.1 Low-Energy Electron Diffraction.- 9.2 The First LEPD Experiments (1979).- 9.2.1 Comparison of LEPD and LEED Cu Results.- 9.2.2 Predicted Advantages of LEPD over LEED.- 9.3 Brightness Enhancement.- 9.4 Surface Structure Determinations with Modern LEPD: CdSe{1010} and CdSe{1120}.- 9.4.1 Relaxation Models.- 9.4.2 I-V Profile Measurements.- 9.4.3 Structure Analysis.- 9.4.4 Differences Between LEED and LEPD Structural Determinations.- 9.5 Positron Diffraction at Very Low Energy.- 9.5.1 Threshold Effects in LEPD from NaF and LiF.- 9.5.2 Lowest Order LEPD Bragg Peak and the Darwin Top Hat.- 9.6 Conclusions.- References.- 10. Time-of-Flight Scattering and Recoiling Spectrometry (TOF-SARS) for Surface Analysis.- 10.1 Historical Review.- 10.2 Experimental Method.- 10.2.1 TOF-SARS Spectrometer.- 10.2.2 Comparison to Rutherford Backscattering (RBS).- 10.3 Examples of Experimental Results.- 10.3.1 TOF Spectra.- 10.3.2 Comparison of TOF-SARS to LEED and AES.- 10.3.3 Structure Analysis.- 10.3.4 Monitoring Sputtering Induced Damage.- 10.3.5 Surface Semichanneling.- 10.3.6 Ion Fractions.- 10.3.7 Ion Induced Auger Electron Spectra.- 10.4 Summary.- References.- 11. Scanning Electron Microscopy with Polarization Analysis: Studies of Magnetic Microstructure.- 11.1 Spin Polarization of Secondary Electrons.- 11.2 Experimental.- 11.2.1 Electron Microscope and Specimen Chamber.- 11.2.2 Transport Optics and Polarization Analyzers.- 11.2.3 Image Processing.- 11.3 SEMPA Measurement Examples.- 11.3.1 Iron Crystals.- 11.3.2 Cobalt Crystals.- 11.3.3 Ferromagnetic Metallic Glasses.- 11.3.4 Domain Walls.- 11.3.5 Magnetic Storage Media.- 11.4 Summary and Future Directions.- References.- 12. Low Energy Electron Microscopy.- 12.1 Fundamentals of LEEM.- 12.1.1 Resolution and Intensity Transmission.- 12.1.2 Intensity.- 12.1.3 Contrast.- 12.1.4 Instrumental Aspects.- 12.2 LEEM Studies of Clean Surfaces.- 12.3 LEEM Studies of Surface Layers.- 12.4 Outlook.- 12.5 Summary.- References.- 13. Atomic Scale Surface Characterization with Photoemission of Adsorbed Xenon (PAX).- 13.1 Introduction.- 13.2 Principles of the PAX-Technique.- 13.2.1 Photoemission Spectra of Adsorbed Xe.- 13.2.2 The D ?-Model.- 13.2.3 Further Experimental Evidence for the D ?-Model.- 13.2.4 The “Local Work Function” Concept.- 13.2.5 Methodological Aspects.- 13.3 Selected Case Studies of Metallic Surfaces.- 13.3.1 Surface Steps: Vicinal Surfaces.- 13.3.2 Metallic Ruthenium Powder.- 13.3.3 Initial Stages of Film Growth: Bimetallic Surfaces.- 13.3.4 Bimetallic Cu/Ru Powder Catalyst.- 13.3.5 Thermal Stability of Metal/Metal Interfaces.- 13.4 Summary and Implications.- References.- 14. Theoretical Aspects of Scanning Tunneling Microscopy.- 14.1 General Tunneling Theory.- 14.1.1 Non-perturbative Treatment.- 14.1.2 Tunneling-Hamiltonian Treatment.- 14.1.3 Modeling the Tip.- 14.2 STM Images and their Interpretation.- 14.2.1 Modes of Imaging.- 14.2.2 Imaging of Metals.- 14.2.3 Imaging of Semiconductors.- 14.2.4 Imaging Band-Edge States.- 14.3 Spectroscopy.- 14.3.1 Qualitative Theory.- 14.3.2 Quantitative Theory.- 14.4 Mechanical Interactions Between Tip and Sample.- 14.5 Conclusion.- References.- 15. Proximal Probes: Techniques for Measuring at the Nanometer Scale.- 15.1 Proximal Probes.- 15.1.1 Tunneling.- 15.1.2 Field Emission.- 15.1.3 Force.- 15.1.4 Near-Field.- 15.2 Nanoscale Fabrication Using Proximal Probes.- 15.3 Conclusion.- References.- 16. Studying Surface Chemistry Atom-by-Atom Using the Scanning Tunneling Microscope.- 16.1 Topography and Spectroscopy with the STM.- 16.2 Imaging Semiconductor Surface Chemistry Atom-by-Atom Using the STM.- 16.3 The Structure of the Si{111}-7 × 7 Surface.- 16.4 Site-Selective Reactions of Si{111}-7 × 7.- 16.5 Molecular Adsorption on Si{111}-7 × 7.- 16.6 Reactions That Involve Extensive Atomic Rearrangements.- 16.7 Doping Effects on Silicon Surface Chemistry.- 16.8 Conclusions and Prospects for the Future.- References.- 17. Bonding and Structure on Semiconductor Surfaces.- 17.1 Basic Mechanism Driving Surface Reconstruction.- 17.2 The Geometric and Electronic Structures of GaAs{110}.- 17.3 The GaAs{111}(2 × 2) Surface Reconstruction.- 17.4 Structure of the Si{111}7 × 7 Surface.- 17.5 The Ge{111} c(2 × 8) Reconstruction.- 17.6 Summary.- References.- 18. Tribology at the Atomic Scale.- 18.1 Concepts in Classical Tribology.- 18.2 Experimental Approaches.- 18.2.1 Surface Force Apparatus.- 18.2.2 Single Asperity Techniques.- 18.3 Theoretical Descriptions of Tribology.- 18.3.1 Simplified Model of Wearless Friction.- 18.3.2 Molecular Dynamics Studies of Shearing Solids.- 18.3.3 Molecular Dynamics Studies of Thin Fluid Flow.- 18.4 Summary and Future Directions.- References.- of Chemistry and Physics of Solid Surfaces IV (Springer Series in Chemical Physics, Vol. 20).- of Chemistry and Physics of Solid Surfaces V (Springer Series in Chemical Physics, Vol. 35).- of Chemistry and Physics of Solid Surfaces VI (Springer Series in Surface Sciences, Vol. 5).- of Chemistry and Physics of Solid Surfaces VII (Springer Series in Surface Sciences, Vol. 10).
€ 60,99
Levertijd ongeveer 8 werkdagen

Rubrieken

    Personen

      Trefwoorden

        Chemistry and Physics of Solid Surfaces VIII