Eta Products and Theta Series Identities

Specificaties
Gebonden, 622 blz. | Engels
Springer Berlin Heidelberg | 2011e druk, 2010
ISBN13: 9783642161513
Rubricering
Springer Berlin Heidelberg 2011e druk, 2010 9783642161513
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This monograph deals with products of Dedekind's eta function, with Hecke theta series on quadratic number fields, and with Eisenstein series. The author brings to the public the large number of identities that have been discovered over the past 20 years, the majority of which have not been published elsewhere.
The book will be of interest to graduate students and scholars in the field of number theory and, in particular, modular forms. It is not an introductory text in this field. Nevertheless, some theoretical background material is presented that is important for understanding the examples in Part II of the book.
In Part I relevant definitions and essential theorems -- such as a complete proof of the structure theorems for coprime residue class groups in quadratic number fields that are not easily accessible in the literature -- are provided. Another example is a thorough description of an algorithm for listing all eta products of given weight and level, together with proofs of some results on the bijection between these eta products and lattice simplices.

Specificaties

ISBN13:9783642161513
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:622
Uitgever:Springer Berlin Heidelberg
Druk:2011

Inhoudsopgave

Introduction.- Part I: Theoretical background.- 1. Dedekind’s eta function and modular forms.- 2. Eta products.- 3. Eta products and lattice points in simplices.- 4. An algorithm for listing lattice points in a simplex.- 5. Theta series with Hecke character.- 6. Groups of coprime residues in quadratic fields.- Part II: Examples.-7. Ideal numbers for quadratic fields.- 8 Eta products of weight .- 9. Level 1: The full modular group.- 10. The prime level N = 2.- 11. The prime level N = 3.- 12. Prime levels N = p ≥ 5.- 13. Level N = 4.- 14. Levels N = p2 with primes p ≥ 3.- 15 Levels N = p3 and p4 for primes p.- 16. Levels N = pq with primes 3 ≤ p < q.- 17. Weight 1 for levels N = 2p with primes p ≥ 5.- 18. Level N = 6.- 19. Weight 1 for prime power levels p5 and p6.- 20. Levels p2q for distinct primes p = 2 and q.- 21. Levels 4p for the primes p = 23 and 19.- 22. Levels 4p for p = 17 and 13.- 23. Levels 4p for p = 11 and 7.- 24. Weight 1 for level N = 20.- 25. Cuspidal eta products of weight 1 for level 12.- 26. Non-cuspidal eta products of weight 1 for level 12.- 27. Weight 1 for Fricke groups Γ∗(q3p).- 28. Weight 1 for Fricke groups Γ∗(2pq).- 29. Weight 1 for Fricke groups Γ∗(p2q2).- 30. Weight 1 for the Fricke groups Γ∗(60) and Γ∗(84).- 31. Some more levels 4pq with odd primes p _= q.- References.- Directory of Characters.- Index of Notations.- Index.

Rubrieken

    Personen

      Trefwoorden

        Eta Products and Theta Series Identities