I: First Steps.- 1 Getting Started.- 1.1 Using XploRe.- 1.1.1 Input and Output Windows.- 1.1.2 Simple Computations.- 1.1.3 First Data Analysis.- 1.1.4 Exploring Data.- 1.1.5 Printing Graphics.- 1.2 Quantlet Examples.- 12.1 Summary Statistics.- 1.2.2 Histograms.- 1.2.3 2D Density Estimation.- 1.2.4 Interactive Kernel Regression.- 1.3 Getting Help.- 1.4 Basic XploRe Syntax.- 1.4.1 Operators.- 1.4.2 Variables.- 1.4.3 Variable Names.- 1.4.4 Functions.- 1.4.5 Quantlet files.- 2. Descriptive Statistics.- 2.1 Data Matrices.- 2.1.1 Creating Data Matrices.- 2.1.2 Loading Data Files.- 2.1.3 Matrix Operations.- 2.2 Computing Statistical Characteristics.- 2.1.1 Minimum and Maximum.- 2.2.2 Mean, Variance and Other Moments.- 2.2.3 Median and Quantiles.- 2.2.4 Covariance and Correlation.- 2.2.5 Categorical Data.- 2.2.6 Missing Values and Infinite Values.- 2.3 Summarizing Statistical Information.- 2.3.1 Summarizing Metric Data.- 2.3.2 Summarizing Categorical Data.- 3 Graphics.- 3.1 Basic Plotting.- 3.1.1 Plotting a Data Set.- 3.1.2 Plotting a Function.- 3.1.3 Plotting Several Functions.- 3.1.4 Coloring Data Sets.- 3.1.5 Plotting Lines from Data Sets.- 3.1.6 Several Plots.- 3.2 Univariate Graphics.- 3.2.1 Boxplots.- 3.2.2 Dotplots.- 3.2.3 Bar Charts.- 3.2.4 Quantile-Quantile Plots.- 3.2.5 Histograms.- 3.3 Multivariate Graphics.- 3.3.1 Three-Dimensional Plots.- 3.3.2 Surface Plots.- 3.3.3 Contour Plots.- 3.3.4 Sunflower Plots.- 3.3.5 Linear Regression.- 3.3.6 Bivariate Plots.- 3.3.7 Star Diagrams.- 3.3.8 Scatter-Plot Matrices.- 3.3.9 Andrews Curves.- 3.3.10 Parallel Coordinate Plots.- 3.4 Advanced Graphics.- 3.4.1 Moving and Rotating.- 3.4.2 Simple Predefined Graphic Primitives.- 3.4.3 Color Models.- 3.5 Graphic Commands.- 3.5.1 Controlling Data Points.- 3.5.2 Color of Data Points.- 3.5.3 Symbol of Data Points.- 3.5.4 Size of Data Points.- 3.5.5 Connection of Data Points.- 3.5.6 Label of Data Points.- 3.5.7 Title and Axes Labels.- 3.5.8 Axes Layout.- 4 Regression Methods.- 4.1 Simple Linear Regression.- 4.2 Multiple Linear Regression.- 4.3 Nonlinear Regression.- 5 Teachware Quantlets.- 5.1 Visualizing Data.- 5.2 Random Sampling.- 5.3 The p-Value in Hypothesis Testing.- 5.4 Approximating the Binomial by the Normal Distribution.- 5.5 The Central Limit Theorem.- 5.6 The Pearson Correlation Coefficient.- 5.7 Linear Regression.- II: Statistical Libraries.- 6 Smoothing Methods.- 6.1 Kernel Density Estimation.- 6.1.1 Computational Aspects.- 6.1.2 Computing Kernel Density Estimates.- 6.1.3 Kernel Choice.- 6.1.4 Bandwidth Selection.- 6.1.5 Confidence Intervals and Bands.- 6.2 Kernel Regression.- 6.2.1 Computational Aspects.- 6.2.2 Computing Kernel Regression Estimates.- 6.2.3 Bandwidth Selection.- 6.2.4 Confidence Intervals and Bands.- 6.2.5 Local Polynomial Regression and Derivative Estimation.- 6.3 Multivariate Density and Regression Functions.- 6.3.1 Computational Aspects.- 6.3.2 Multivariate Density Estimation.- 6.3.3 Multivariate Regression.- 7 Generalized Linear Models.- 7.1 Estimating GLMs.- 7.1.1 Models.- 7.1.2 Maximum-Likelihood Estimation.- 7.2 Computing GLM Estimates.- 7.2.1 Data Preparation.- 7.2.2 Interactive Estimation.- 7.2.2 Noninteractive Estimation.- 7.3 Weights & Constraints.- 7.3.1 Prior Weights.- 7.3.2 Replications in Data.- 7.3.3 Constrained Estimation.- 7.4 Options.- 7.4.1 Setting Options.- 7.4.2 Weights and Offsets.- 7.4.3 Control Parameters.- 7.4.4 Output Modification.- 7.5 Statistical Evaluation and Presentation.- 7.5.1 Statistical Characteristics.- 7.5.2 Output Display.- 7.5.3 Significance of Parameters.- 7.5.4 Likelihood Ratio Tests for Comparing Nested Models.- 7.5.5 Subset Selection.- 8 Neural Networks.- 8.1 Feed-Forward Networks.- 8.2 Computing a Neural Network.- 8.2.1 Controlling the Parameters of the Neural Network.- 8.2.2 The Resulting Neural Network.- 8.3 Running a Neural Network.- 8.3.1 Implementing a Simple Discriminant Analysis.- 8.3.2 Implementing a More Complex Discriminant Analysis.- 9 Time Series.- 9.1 Time Domain and Frequency Domain Analysis.- 9.1.1 Autocovariance and Autocorrelation Function.- 9.1.2 The Periodogram and the Spectrum of a Series.- 9.2 Linear Models.- 9.2.1 Autoregressive Models.- 9.2.2 Autoregressive Moving Average Models.- 9.2.3 Estimating ARMA Processes.- 9.3 Nonlinear Models.- 9.3.1 Several Examples of Nonlinear Models.- 9.3.2 Nonlinearity in the Conditional Second Moments.- 9.3.3 Estimating ARCH Models.- 9.3.4 Testing for ARCH.- 10 Kalman Filtering.- 10.1 State-Space Models.- 10.1.1 Examples of State-Space Models.- 10.1.2 Modeling State-Space Models in XploRe.- 10.2 Kalman Filtering and Smoothing.- 10.3 Parameter Estimation in State-Space Models.- 11 Finance.- 11.1 Outline of the Theory.- 11.1.1 Some History.- 11.1.2 The Black-Scholes Formula.- 11.2 Assets.- 11.2.1 Stock Simulation.- 11.2.2 Stock Estimation.- 11.2.3 Stock Estimation and Simulation.- 11.3 Options.- 11.3.1 Calculation of Option Prices and Implied Volatilities.- 11.3.2 Option Price Determining Factors.- 11.3.3 Greeks.- 11.4 Portfolios and Hedging.- 11.4.1 Calculation of Arbitrage.- 11.4.2 Bull-Call Spreads.- 12 Microeconometrics and Panel Data.- 12.1 Limited-Dependent and Qualitative Dependent Variables.- 12.1.1 Probit, Logit and Tobit.- 12.1.2 Single Index Models.- 12.1.3 Average Derivatives.- 12.1.4 Average Derivative Estimation.- 12.1.5 Weighted Average Derivative Estimation.- 12.1.6 Average Derivatives and Discrete Variables.- 12.1.7 Parametric versus Semiparametric Single Index Models.- 12.2 Multiple Index Models.- 12.2.1 Sliced Inverse Regression.- 12.2.2 Testing Parametric Multiple Index Models.- 12.3 Self-Selection Models.- 12.3.1 Parametric Model.- 12.3.2 Semiparametric Model.- 12.4 Panel Data Analysis.- 12.4.1 The Data Set.- 12.4.2 Time Effects.- 12.4.3 Model Specification.- 12.4.4 Estimation.- 12.4.5 An Example.- 12.5 Dynamic Panel Data Models.- 12.6 Unit Root Tests for Panel Data.- 13 Extreme Value Analysis.- 13.1 Extreme Value Models.- 13.2 Generalized Pareto Distributions.- 13.3 Assessing the Adequacy: Mean Excess Functions.- 13.4 Estimation in EV Models.- 13.4.1 Linear Combination of Ratios of Spacings (LRS).- 13.4.2 ML Estimator in the EV Model.- 13.4.3 ML Estimator in the Gumbel Model.- 13.5 Fitting GP Distributions to the Upper Tail.- 13.6 Parametric Estimators for GP Models.- 13.6.1 Moment Estimator.- 13.6.2 ML Estimator in the GP Model.- 13.6.3 Pickands Estimator.- 13.6.4 Drees-Pickands Estimator.- 13.6.5 Hill Estimator.- 13.6.6 ML Estimator for Exponential Distributions.- 13.6.7 Selecting a Threshold by Means of a Diagram.- 13.7 Graphical User Interface.- 13.8 Example.- 14 Wavelets.- 14.1 Quantlib twave.- 14.1.1 Change Basis.- 14.1.2 Change Function.- 14.1.3 Change View.- 14.2 Discrete Wavelet Transform.- 14.3 Function Approximation.- 14.4 Data Compression.- 14.5 Two Sines.- 14.6 Frequency Shift.- 14.7 Thresholding.- 14.7.1 Hard Thresholding.- 14.7.2 Soft Thresholding.- 14.7.3 Adaptive Thresholding.- 14.8 Translation Invariance.- 14.9 Image Denoising.- III: Programming.- 15 Reading and Writing Data.- 15.1 Reading and Writing Data Files.- 15.2 Input Format Strings.- 15.3 Output Format Strings.- 15.4 Customizing the Output Window.- 15.4.1 Headline Style.- 15.4.2 Layer Style.- 15.4.3 Line Number Style.- 15.4.4 Value Formats and Lengths.- 15.4.5 Saving Output to a File.- 16 Matrix Handling.- 16.1 Basic Operations.- 16.1.1 Creating Matrices and Arrays.- 16.1.2 Operators for Numeric Matrices.- 16.2 Comparison Operators.- 16.3 Matrix Manipulation.- 16.3.1 Extraction of Elements.- 16.3.2 Matrix Transformation.- 16.4 Sums and Products.- 16.5 Distance Function.- 16.6 Decompositions.- 16.6.1 Spectral Decomposition.- 16.6.2 Singular Value Decomposition.- 16.6.3 LU Decomposition.- 16.6.4 Cholesky Decomposition.- 16.7 Lists.- 16.7.1 Creating Lists.- 16.7.2 Handling Lists.- 16.7.3 Getting Information on Lists.- 17 Quantlets and Quantlibs.- 17.1 Quantlets.- 17.2 Flow Control.- 17.2.1 Local and Global Variables.- 17.2.2 Conditioning.- 17.2.3 Branching.- 17.2.4 While-Loop.- 17.2.5 Do-Loop.- 17.2.6 Optional Input and Output in Procedures.- 17.2.7 Errors and Warnings.- 17.3 User Interaction.- 17.4 APSS.- 17.5 Quantlibs.