1. Die reellen Zahlen.- § 1 Mengen.- § 2 Funktionen.- Definitionen und Beispiele.- Die Komposition von Funktionen.- Die Umkehrfunktion.- Bijektive Funktionen.- § 3 Die reellen Zahlen.- Die Zahlengerade.- Die arithmetischen Eigenschaften von JR.- Ungleichungen.- Intervalle.- Definition und Eigenschaften der Wurzel.- Der Betrag.- Zusammenfassung.- 2. Vollständige Induktion.- § 1 Beweis durch vollständige Induktion.- Erklärung des Suinmenzeichens.- § 2 Rekursive Definitionen.- § 3 n-te Potenz und n-te Wurzel.- Eigenschaften der n-ten Potenz.- Die n-te Wurzel.- Die binomische Formel.- Zusammenfassung.- 3. Die komplexen zahlen.- § 1 Definition und Veranschaulichung.- § 2 Der Körper ? der komplexen Zahlen.- Rechengesetze in ?.- IR als Teilmenge von ?.- § 3 Realteil, Imaginärteil, Betrag.- Realteil, Imaginârteil, Konjugierte.- Der Betrag.- § 4 Die Polarform.- § 5 n-te Wurzeln einer komplexen Zahl.- Zusammenfassung.- 4. Reelle und komplexe Funktionen.- § 1 Definition der reellen Funktionen und Beispiele.- § 2 Monotone Funktionen.- § 3 Beispiele aus der Wechselstrom-lehre.- § 4 Rechnen mit reellen Funktionen.- § 5 Polynome.- Das Horner-Schema.- Nullstellen von Polynomen.- § 6 Komplexe Funktionen.- Komplexe Funktionen mit reellen Argumenten.- Zusammenfassung.- 5. Das Supremum.- § 1 Schranken, Maximum, Minimum, Supremum, Infimum.- § 2 Das Supremumsaxiom.- § 3 Eigenschaften von Supremum und Infimum.- § 4 Supremum und Maximum bei Funktionen.- § 5 Dual-, Dezimal-und Hexadezimal-zahlen.- Zusammenfassung.- 6. Folgen.- § 1 Definition.- § 2 Monotonie und Beschrànktheit.- Beschränktheit.- Monotonie.- Monotone beschrankte Folgen.- § 3 Konvergenz und Divergenz.- Konvergenz.- Divergenz.- Rechenregeln für konvergente Folgen.- Beispiele.- Rekursiv definierte Folgen.- § 4 Komplexe Folgen.- Zusammenfassung.- 7. Einführung in die Integralrechnung.- § 1 Beispiele.- § 2 Obersumme und Untersurame.- § 3 Die Definition des Integrals.- § 4 Das Riemannsche Integrabilitäts-kriterium.- Integrierbarkeit monotoner Funktionen.- § 5 Integral als Grenzwert einer Folge.- Das Riemannsche Summen-Kriterium.- § 6 Numerische Integration.- Die Rechteckregel.- Die Trapezregel.- Die Simpsonregel.- § 7 Eigenschaften des Integrals.- Eigenschaften des Integrals bezüg-lich des Integrationsintervalls.- Eigenschaften bezüglich des Inte-granden.- Ungleichungen für Integrale.- Zusammenfassung.- 8. Reihen.- (Zenon’s Paradoxon).- § 1 Beispiele.- § 2 Konvergente Reihen.- Geometrische Reihen.- Die „Schneeflockenkurve“.- Rechenregeln für konvergente Reihen.- Notwendiges Konvergenzkriterium.- § 3 Konvergenzkriterien.- Vergleichskriterien.- Wurzelkriterium.- Quotientenkriterium.- Alternierende Reihen.- § 4 Absolut konvergente Reihen.- Zusammenfassung.- 9. Potenzreihen und spezielle Funktionen.- § 1 Potenzreihen.- Konvergenz von Potenzreihen.- Zusammenfassung: Potenzreihen als Funktionen.- § 2 Exponentialfunktion.- Definition der Exponentialfunktion.- Eigenschaften der Exponentialfunktion.- § 3 Sinus und Cosinus.- § 4 Hyperbelfunktionen.- Zusammenfassung.- 10. Stetige Funktionen.- § 1 Stetigkeit.- Grenzwerte von Funktionen.- Einseitige und uneigentliche Grenzwerte.- Stetige Funktionen.- Trigonometrische Funktionen und Exponentialfunktion sind stetig.- Stetig auf [a,b]: Drei Sät6ze.- § 2 Anwendung auf spezielle Funktionen.- Exponentialfunktion, Logarithmus und allgemeine Potenz.- Trigonometrische Funktionen.- § 3 Die ?-?-Definition der Stetigkeit und die Lipschitz-Stegigkeit.- § 4 Stetigkeit und Integration.- Zusammenfassung.- 11. Differentialrechnung.- § 1 Lineare Approximation.- § 2 Definition der Differenzierbarkeit.- § 3 Differenzierbare Funktionen.- § 4 Rechenregeln für differenzierbare Funktionen.- Summe, Produkt, Quotient.- Die Kettenregel.- Die Ableitung der Umkehrfunktion.- Differenzierbarkeit von Potenzreihen.- § 5 Die Ableitung komplexer Funktionen.- § 6 Höhere Ableitungen.- Aufgaben zum Einuben der Diffe-rentiationstechniken.- § 7 Beispiele von Differential-gleichungen und Lösungen.- Losung der Schwingungsgleichung durch Potenzreihenansatz.- § 8 Der erste Mittelwertsatz.- Lokale Extrema.- Der erste Mittelwertsatz der Differentialrechnung.- Anwendungen des ersten Mittel-wertSät6zes.- § 9 Die Regeln von de L’Hôpital.- Zusammenfassung.- 12. Integralrechnung-Integrationstechnik.- § 1 Der Hauptsatz der Differential-und Integralrechnung.- § 2 Die Stammfunktion.- § 3 Eine andere Formulierung des HauptSät6zes.- § 4 Integration zur Lösung einfachster Differentialgleichungen.- § 5 Das unbestimmte Integral.- § 6 Die Integration komplexer Funktionen.- § 7 Integrationsmethoden.- Integranden der Form
% MathType!MTEF!2!1!+-
% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaatC
% vAUfKttLearyqr1ngBPrgaiuaacuWFMbGzgaqbaaqaaiab-zgaMbaa
% aaa!3D98!
$$
\frac{{f'}}{f}
$$.- Partielle Integration.- Substitution.- Eine Umformulierung der Substitu-tionsregel.- Substitution bei bestimmten Inte-gralen.- § 8 Separable Differentialgleichungen.- Lösungsmethode.- Merkregel.- Anfangswertprobleme.- § 9 Integration rationaler Funktionen.- 1. Schritt: Polynomdivision.- 2. Schritt: Polynomzerlegung.- 3. Schritt: Partialbruchzerlegung.- 4. Schritt: Integration rationaler Funktionen.- Kurze Merkregelsammlung.- Zusammenfassung.- 13. Uneigentliche Integrale.- § 1 Unbeschränktes Integrationsintervall.- Integrationsintervall ]- ?,? [.- Konvergenzkriterien.- § 2 Unbeschränkter Integrand.- Konvergenzkriterien.- § 3 Die Gammafunktion.- § 4 Die Laplace-Transformation.- Linearität und elementare Laplace-Transformationen.- Bemerkungen zum Umkehrproblem.- Transformation von Ableitungen.- Transformation von f(at±b).- Verschiebung des Arguments in der Bildfunktion.- Kurze Übersicht.- Zusammenfassung.- 14. Taylorpolynome und Taylorreihen.- § 1 Approximation durch Polynome.- Approximation.- Taylorpolynome.- § 2 Restglied.- Restglied nach Taylor.- Anwendung: Funktionswerte berechnen.- Restglied nach Lagrange.- Restglied abschätzen.- Anwendung: Lokale Extrema 2.- § 3 Taylorreihen.- Definition.- Ein Gegenbeispiel.- Konvergenz der Taylorreihe.- Beispiel Logarithmus.- Beispiel Arcus-Tangens.- Beispiel Binomische Reihe.- Zusammenfassung.- Lösungen der Aufgaben.