Fabrice Guillet,
Howard J. Hamilton
Springer Berlin Heidelberg
2007e druk, 2007
9783540449119
Quality Measures in Data Mining
Specificaties
Gebonden, 314 blz.
|
Engels
Springer Berlin Heidelberg |
2007e druk, 2007
ISBN13: 9783540449119
Rubricering
Onderdeel van serie
Studies in Computational Intelligence
Verwachte levertijd ongeveer 8 werkdagen
Samenvatting
This book presents recent advances in quality measures in data mining.
Specificaties
ISBN13:9783540449119
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:314
Uitgever:Springer Berlin Heidelberg
Druk:2007
Inhoudsopgave
Overviews on rule quality.- Choosing the Right Lens: Finding What is Interesting in Data Mining.- A Graph-based Clustering Approach to Evaluate Interestingness Measures: A Tool and a Comparative Study.- Association Rule Interestingness Measures: Experimental and Theoretical Studies.- On the Discovery of Exception Rules: A Survey.- From data to rule quality.- Measuring and Modelling Data Quality for Quality-Awareness in Data Mining.- Quality and Complexity Measures for Data Linkage and Deduplication.- Statistical Methodologies for Mining Potentially Interesting Contrast Sets.- Understandability of Association Rules: A Heuristic Measure to Enhance Rule Quality.- Rule quality and validation.- A New Probabilistic Measure of Interestingness for Association Rules, Based on the Likelihood of the Link.- Towards a Unifying Probabilistic Implicative Normalized Quality Measure for Association Rules.- Association Rule Interestingness: Measure and Statistical Validation.- Comparing Classification Results between N-ary and Binary Problems.

