<div>1. Food Virology: Advances and Needs</div><div>Charles P. Gerba</div><div><br></div><div>References</div><div><br></div><div>2. Human and Animal Viruses in Food (Including Taxonomy of Enteric Viruses)</div><div>Gail E. Greening, Jennifer L. Cannon</div><div>1.0 Introduction</div><div>2.0 Hepatitis A virus</div><div> 2.1 Distribution and transmission</div><div> 2.2 Taxonomy and morphology</div><div> 2.3 Growth and biological properties</div><div> 2.4 Infection and disease</div><div> 2.5 Foodborne disease</div><div>3.0 Hepatitis E virus</div><div> 3.1 Distribution and transmission</div><div> 3.2 Taxonomy and morphology</div><div> 3.3 Growth and biological properties</div><div> 3.4 Infection and disease</div><div> 3.5 Foodborne disease</div><div> 3.6 Zoonotic transmission</div><div>4.0 Norovirus </div><div> 4.1 Distribution and transmission</div><div> 4.2 Taxonomy and morphology</div><div> 4.3 Growth and biological properties</div><div> 4.4 Infection and disease</div><div> 4.5 Foodborne disease</div><div> 4.6 Zoonotic transmission</div><div>5.0 Sapovirus</div><div>5.1 Distribution and transmission</div><div> 5.2 Taxonomy and morphology</div><div> 5.3 Growth and biological properties</div><div> 5.4 Infection and disease</div><div> 5.5 Foodborne disease</div><div> 5.6 Zoonotic transmission</div><div>6.0 Rotavirus</div><div> 6.1 Distribution and transmission</div><div> 6.2 Taxonomy and morphology</div><div> 6.3 Growth and biological properties</div><div> 6.4 Infection and disease</div><div> 6.5 Foodborne disease</div><div>6.6 Zoonotic transmission</div><div>7.0 Astrovirus</div><div> 7.1 Distribution and transmission</div><div> 7.2 Taxonomy and morphology</div><div> 7.3 Growth and biological properties</div><div> 7.4 Infection and disease</div><div> 7.5 Foodborne disease</div><div>8.0 Other viruses with potential for foodborne transmission</div><div> 8.1 Adenovirus</div><div> 8.2 Enterovirus</div><div> 8.3 Aichivirus</div><div>8.4 Parvovirus</div><div> 8.5 Coronavirus</div><div> 8.6 Torovirus</div><div> 8.7 Picobirnavirus</div><div> 8.8 Tick-borne encephalitis virus </div><div> 8.9 Other foodborne routes of virus transmission</div><div>9.0 Summary and conclusions</div><div>10.0 References</div><div><br></div><div>3. The Molecular Virology of Enteric Viruses</div><div>Javier Buesa, Jesús Rodriguez-Díaz</div><div><br></div><div>1.0 Caliciviruses: Noroviruses and Sapoviruses</div><div> 1.1. Structure and Composition <br> 1.2. Genomes and Proteins<br> 1.3. Molecular Diversity of Noroviruses<br> 1.4. Genetic Classification of Sapoviruses<br> 1.5. Virus Replication<br> 1.6. Virus-Cell Interactions<br></div><div>2.0 Rotaviruses</div><div> 2.1. Virus Classification</div><div> 2.2. Structure of the Virion</div><div> 2.3. The Genome</div><div> 2.4. Mechanisms of Evolution and Strain Diversity</div><div> 2.5. Genome Replication</div><div> 2.6. Cell infection</div><div> 2.7. The NSP4 Enterotoxin</div><div>3.0 Astroviruses</div><div> 3.1. Structure of the Virion</div><div> 3.2. Genome and Proteins</div><div>4.0 Enteroviruses</div><div> 4.1. Polioviruses</div><div> 4.2. Kobuviruses</div><div>5.0 Hepatitis A Virus</div><div> 5.1. The Genome</div><div> 5.2. Proteins</div><div> 5.3. Virus Replication</div><div>6.0 Hepatitis E Virus<<div> 6.1. The Genome</div><div> 6.2. Genetic Variants</div><div> 6.3. Proteins</div><div> 6.4. Replication</div><div>7.0 Enteric Adenovirus</div><div>8.0 Summary</div><div>9.0 References</div><div><br></div><div>4. Epidemiology of Food-borne Viruses</div><div>Aron J. Hall</div><div><br></div><div>1.0 Introduction</div><div>2.0 Disease Burden</div><div> 2.1 Challenges and Methods to Estimating Burden</div><div> 2.2 Burden in the United States</div><div> 2.3 Global Burden</div><div>3.0 Outbreak Surveillance</div><div> 3.1 Outbreak Detection Methods</div><div>3.2 Public Health Investigation</div><div>3.3 National Surveillance Systems</div><div>3.4 Descriptive Epidemiology</div><div>4.0 Summary and Conclusions</div><div>5.0 References</div><div><br></div><div>5. Epidemiology of Viral Foodborne Outbreaks: Role of Food Handlers, Irrigation Water, and Surfaces</div><div>Craig Hedberg</div><div><br></div><div>1.0 Introduction</div><div>2.0 Outbreak detection, investigation, and surveillance</div><div>3.0 Role of food handlers</div><div>4.0 Role of irrigation water</div><div>5.0 Role of surface contamination</div><div>6.0 Summary and conclusions7.0 References </div><div><br></div><div>6. Case Studies and Outbreaks – Fresh Produce</div><div>Efstathia Papafragkou, Kaoru Hida and Center for Food Safety and Applied Nutrition</div><div><br></div><div>1.0. Introduction</div><div>2.0. Case studies and outbreaks</div><div> 2.1 Norovirus outbreaks</div><div> 2.2 Hepatitis A virus outbreaks</div><div><br></div><div>3.0. Summary and conclusions</div><div>4.0. References</div><div><br></div><div>7. Shellfish-Associated Enteric Virus Illness: Virus Localization, Disease Outbreaks and Prevention</div><div>Gary P. Richards</div><div><br></div><div>1.0. Introduction</div><div>2.0. Virus localization within shellfish</div><div>3.0. Case studies</div><div> 3.1. Hepatitis A virus</div><div> 3.2. Noroviruses</div><div> 3.3. Hepatitis E virus</div><div>4.0. Disease prevention</div><div> 4.1. Routine monitoring and regulations</div><div> 4.2. Enhanced monitoring and enforcement</div><div> 4.3. Improved sewage treatment </div><div> 4.4. Analytical techniques</div><div> 4.5. Processing strategies</div><div> 4.6. Disease reporting and epidemiological follow-up</div><div> 4.7. Hygienic practices</div><div>5.0. Summary </div><div>6.0. References</div><div><br></div><div>8. Outbreaks and case studies – Community and Food Handlers</div><div>Qing Wang, Sarah Markland, and Kalmia E. Kniel</div><div>1.0 Introduction</div><div>2.0 Human norovirus</div><div> 2.1 Case study 1</div><div> 2.2 Case study 2</div><div> 2.3 Case study 3</div><div> 2.4 Prevention and control</div><div><br></div><div>3.0 Rotavirus</div><div> 3.1 Case study 1</div><div> 3.2 Case study 2</div><div> 3.3 Case study 3</div><div> 3.4 Prevention and control</div><div><br></div><div>4.0 Hepatitis A Virus</div><div> 4.1 Case study 1</div><div> 4.2 Prevention and control</div><div><br></div><div>5.0 Aichivirus</div><div>6.0 Hepatitis E Virus</div><div> 6.1 Case study 1</div><div> 6.2 Case study 2</div><div> 6.3 Prevention and control</div><div><br></div><div>7.0 Summary</div><div>8.0 References</div><div><br></div><div>9. Methods for Virus Recovery from Foods</div><div>Sagar M. Goyal and Hamada A. Aboubakr</div><div>1.0 INTRODUCTION</div><div>2.0 FOOD SAMPLING FOR VIRUS DETECTION</div><div>3.0 STRATEGIES FOR RECOVERY OF VIRUSES FROM FOODS</div><div><br></div><div> 3.1 The approach of viral particle recovery</div><div> 3.1.1 Elution of viral particles from food matrices</div><div>< 3.1.2 Clarification of the virus eluate</div><div> 3.1.3 Concentration step</div><div> 3.1.4 Secondary concentration step</div><div><br></div><div> 3.2 The approach of direct recovery of viral RNA from food</div><div><br></div><div>4.0 QUALITY ASSURANCE OF VIRUS RECOVERY METHODS FROM FOOD</div><div></div><div>5.0 CONCLUSIONS6.0 REFERENCES</div><div> </div><div>10. Methods for Virus Recovery in Water</div><div>Kristen E. Gibson and Mark A. Borchardt</div><div><br></div><div>1.0 Introduction</div><div><br></div><div>2.0 Virus recovery methods</div><div> </div><div>2.1 VIRADEL </div><div> 2.2 Hollow Fiber Ultrafiltration </div><div> 2.3 Secondary Concentration</div><div><br></div><div> 2.4 Method Selection: What is important?</div><div><br></div><div>3.0 Advantages of virus sampling</div><div><br></div><div>5.0 Summary and conclusions</div><div><br></div><div>6.0 References</div><div><br></div><div>11. Molecular Detection Methods of Foodborne Viruses</div><div>Preeti Chhabra & Jan Vinjé</div><div>1.0 Introduction</div><div>2.0 Non-amplification methods</div><div> 2.1 Probe hybridization </div><div> 2.1.1 Biosensors</div><div> 2.1.2 Nucleic acid aptamers</div><div> 2.1.3 Carbohydrates (Histo-blood group antigens)</div>2.1.4 Quantum dots<div> 2.1.5 Microarray</div><div>3.0 Target-specific amplification methods</div><div>3.1 Conventional polymerase chain reaction (PCR): RT-PCR, nested PCR, multiplex PCR</div><div> 3.1.1 Post amplification analysis and interpretation of results of conventional PCRs</div><div> 3.2 Real-time PCR </div><div> 3.3. Controls: process controls and amplification controls</div><div> 3.3.1 Process controls</div><div> 3.3.2 Amplification controls</div><div> 3.3.3 Interpretation of PCR and qPCR results based on control results</div><div>3.4 Application of conventional and real-time PCRs in detection of viruses in food matrix</div><div>3.5 Isothermal amplification methods</div><div> 3.5.1 Nucleic acid sequence-based amplification (NASBA)</div><div> 3.5.1.1 Molecular Beacon in NASBA</div><div> 3.5.2 Loop mediated isothermal amplification (LAMP)</div><div>4.0 Conclusions</div><div>5.0 References</div><div><br></div><div>12. Methods for Estimating Virus Infectivity<div>Doris H. D’Souza</div><br>1.0 Introduction</div><div>2.0 RT-PCR for infectious virus detection</div><div>2.1 Enzymatic pretreatments for detection of damaged capsid/loss of infectivity</div><div>2.2 Labelling with biotin hydrazide for detection of oxidatively damaged viral capsids</div><div>2.3 Pretreatment with intercalating dyes followed by molecular assays for infectivity determination</div><div>2.4 Porcine gastric mucin (PGM) as a method for selective binding of intact viral capsids</div><div>2.5 Other binding-based infectivity assays</div><div>2.6 Cell-culture combinations with molecular based detection (RT-PCR)</div><div>3.0 Use of cultivable surrogates for the determination of human norovirus (HuNoV) infectivity</div><div> 3.1 Feline calicivirus as a cultivable HuNoV surrogate to determine infectivity</div><div> 3.2 Murine norovirus as a cultivable surrogate for HuNoV </div><div>3.3 Tulane virus as a cultivable surrogate to determine HuNoV infectivity</div><div>3.4 Porcine sapovirus as a cultivable HuNoV surrogate to determine infectivity</div><div>3.5 Virus-Like particles as surrogates</div><div>4.0 Animal models and human feeding studies </div><div> 4.1 Animal models</div><div> 4.2 Feeding studies/Human challenge studies</div><div>5.0 Summary and conclusions</div><div>6.0 References </div><div><br></div><div>13. Survival of Enteric Viruses in the Environment and Food</div><div>G. Sánchez, A. Bosch</div><div><br></div><div>1.0 Introduction</div><div><br></div><div>2.0 Methods to study virus persistence in food and the environment</div><div><br></div><div>3.0 Virus persistence in the environment</div><div> 3.1 Virus persistence in environmental waters </div><div> 3.2 Virus persistence in soil</div><div> 3.3 Virus persistence in aerosols</div><div> 3.4 Virus persistence on fomites</div><div> 3.5 Virus persistence on hands</div><br>4.0 Stability of enteric viruses in food products</div><div> 4.1 Stability of enteric viruses on chilled products </div><div> 4.2 Stability of enteric viruses under frozen storage </div><div> 4.3 Effects of relative humidity on enteric virus persistence</div><div> 4.4 Stability of enteric viruses on dried food products</div><div> 4.5 Stability of enteric viruses under modified atmosphere packaging</div><div> 4.6 Effects of acidification on enteric virus survival</div><div><br></div><div>5.0 Conclusions</div><div><br></div><div>6.0 References</div><div><br></div><div>14. Using Microbicidal Chemicals to Interrupt the Spread of Foodborne Viruses</div><div>Syed A. Sattar, Sabah Bidawid</div><div><br></div><div>1.0 Introduction</div><div>2.0 Basic considerations</div><div>3.0 Test methodologies to determine virucidal activity</div><div>4.0 Factors in testing virucidal activity</div> 4.1 Test viruses</div><div> 4.2 Nature and design of carriers</div> 4.2.1 Environmental surfaces</div><div> 4.2.2 Food items</div><div> 4.2.3 Hands</div><div> 4.3 Nature and level of soil loading</div><div> 4.4 Time and temperature for virus-microbicide contact</div><div> 4.5 Elimination of Cytotoxicity</div><div> 4.6 Neutralization of virucidal activity</div><div> 4.7 Quantitation of virus infectivity</div><div> 4.8 Number of test and control carriers</div><div> 4.9 Product performance criteria</div><div>5.0 Currently available tests</div><div> 5.1 Quantitative suspension tests</div><div> 5.2 Quantitative carrier tests</div><div>6.0 Practical aspects of testing microbicides</div><div> 6.1 Hepatitis A virus strain HM-175 (ATCC VR-1402)</div><div> 6.2 Feline calicivirus strain F9 (ATCC VR-782)</div><div> 6.3 Murine norovirus type 1 (Strain S99)</div><div> 6.4 Human rotavirus - WA strain (ATCC VR-2018)</div><div> 6.5 Additional Controls in virucidal Tests</div><div>7.0 Microbicides in environmental control of foodborne viruses</div><div>8.0 Concluding remarks<div>9.0 References</div><div><br></div><div>15. Virus Inactivation During Food Processing</div><div>Alvin Lee, Stephen Grove</div><div>1.0 Introduction</div><div>2.0 Nonthermal preservation processes</div><div> 2.1 High pressure processing</div><div> 2.1.1 Pressure effects on viruses</div><div> 2.1.2. Comparison of HPP inactivation of various human norovirus surrogates</div><div> 2.1.3 Oyster and bivalve mollusks processing</div><div> 2.2 Irradiation</div><div> 2.3 Pulsed electric field</div><div> 2.4 High-intensity pulsed light</div><div> 2.5 High power ultrasound</div><div>3.0 Sanitizers used in food processing</div><div> 3.1 Chlorine</div><div> 3.2 Organic acid based sanitizers</div><div> 3.3 Electrolyzed water</div><div> 3.4 Chlorine dioxide</div><div>4.0 Summary and conclusions</div><div>4.2 References<div><br></div><div>16. Natural Virucidal Compounds in Foods</div>right, Damian H. Gilling</div>1.0 Introduction</div><div> 1.1 Types of plant antimicrobials</div><div>2.0 Antiviral activity of compounds from plants</div><div> 2.1 Efficacy of plant antimicrobials against enveloped viruses</div><div> 2.2 Efficacy of plant antimicrobials against non-enveloped viruses</div><div><br></div><div>3.0 Mechanisms of antiviral action</div><div> 3.1 Mechanisms of antiviral activity against enveloped viruses</div><div> 3.2 Mechanisms of antiviral activity against non-enveloped viruses</div><div><br></div><div>4.0 Conclusions</div><div>5.0 References</div><div><br></div><div>17. Risk Assessment for Foodborne Viruses</div><div>Elizabeth Bradshaw and Lee-Ann Jaykus</div><div><br></div><div>1.0 Introduction to risk analysis</div><div> 1.1 Risk management</div><div> 1.2 Risk communication</div><div> 1.3 Risk assessment</div><div>2.0 Microbial risk assessment<div>3.0 Process of risk assessment</div><div>4.0 Structure of risk assessment</div><div> 4.1 Hazard identification</div><div> 4.2 Exposure assessment</div><div> 4.3 Hazard characterization</div><div> 4.4 Risk characterization</div><div>5.0 Elements of risk assessment in food virology</div><div> 5.1 Hazard assessment, risk profiles, and meta analysis</div><div> 5.2 Data for exposure modeling</div><div> 5.3 Predictive microbiology</div><div> 5.4 Hazard characterization</div><div>6.0 Recent risk modeling efforts in food virology</div><div> 6.1 Fresh produce</div><div> 6.1.a Irrigation with wastewater or recycled water</div><div> 6.1.b Fresh produce along the farm-to-fork chain</div><div> 6.2 Molluscan shellfish</div><div> 6.3 RTE foods and food handling</div><div> 6.4 Synthesis comments</div><div>7.0 Conclusions</div><div>8.0 Acknowledgements</div><div>9.0 References</div><div><br><div>Index</div></div></div></div></div>