Acoustics-A Textbook for Engineers and Physicists

Volume II: Applications

Specificaties
Gebonden, blz. | Engels
Springer International Publishing | e druk, 2017
ISBN13: 9783319568461
Rubricering
Springer International Publishing e druk, 2017 9783319568461
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This textbook provides graduate and advanced undergraduate students with a comprehensive introduction to the application of basic principles and concepts for physical and engineering acoustics. Many of the chapters are independent, and all build from introductory to more sophisticated material. Written by a well-known textbook author with 39 years of experience performing research, teaching, and mentoring in the field, it is specially designed to provide maximum support for learning.  Derivations are rigorous and logical, with thorough explanations of operations that are not obvious. Many of the derivations and examples have not previously appeared in print. Important concepts are discussed for their physical implications and implementation. Many of the 56 examples are mini case studies that address systems students will find to be interesting and motivating for continued study. The example solutions address both the significance of the example and the reasoning underlying the formulation. Tasks that require computational work are fully explained. This volume contains 168 homework exercises, accompanied by a detailed solutions manual for instructors. Building on the foundation provided in Volume I: Fundamentals, this text offers a knowledge base that will enable the reader to begin undertaking research and to work in the core areas of acoustics.

Specificaties

ISBN13:9783319568461
Taal:Engels
Bindwijze:gebonden
Uitgever:Springer International Publishing

Inhoudsopgave

<div>List of Examples</div><div><br></div><div>Preface</div><div><br></div><div>7 Radiation from Vibrating Bodies</div><div>7.1 Spherical Harmonics</div><div>7.1.1 Separation of Variables</div><div>7.1.2 Description of the Pressure Field</div><div>7.1.3 Arbitrary Spatial Dependence</div><div>7.2 Radiation from a Spherical Body</div><div>7.2.1 Analysis</div><div>7.2.2 Important Limits</div><div>7.2.3 Symmetry Plane<br><div>7.2.4 Interaction with an Elastic Spherical Shell&nbsp;</div><div>7.3 Radiation from an Infinite Cylinder</div><div>7.3.1 Separation of Variables</div><div>7.3.2 Transverse Dependence-Cylindrical Bessel Functions</div><div>7.3.3 Radiation due to a Helical Surface Wave</div><div>7.3.4 Axially Periodic Surface Vibration&nbsp;</div><div>7.3.5 Finite Length Effects&nbsp;</div><div>7.4 Kirchhoff-Helmholtz Integral Theorem</div><div>7.4.1 Derivation for an Acoustic Cavity</div><div>7.4.2 Acoustic Radiation into an Exterior Domain</div><div>7.5 Numerical Methods for Radiation from Arbitrary Objects</div><div>7.5.1 Source Superposition</div><div>7.5.2 Boundary Element Method</div><div>7.5.3 Finite Element Method</div><div>7.6 Homework Exercises</div><div><br></div><div>8 Radiation from a Source in a Baffle</div><div>8.1 The Rayleigh Integral</div><div>8.2 Farfield Directivity</div><div>8.2.1 Cartesian Coordinate Description</div><div>8.2.2 Farfield of a Piston Transducer</div><div>8.3 Axial Dependence for a Circular Transducer</div><div>8.4 An Overall Picture of the Pressure Field</div><div>8.5 Radiation Impedance of a Circular Piston</div><div>8.6 Time Domain Rayleigh Integral</div><div>8.7 Homework Exercises</div><div><br></div><div>9 Modal Analysis of Waveguides</div><div>9.1 Propagation in a Horn</div><div>9.1.1 The Webster Horn Equation</div><div>9.1.2 Exponential Horn</div><div>9.1.3 Group Velocity</div><div>9.1.4 WKB Solution for an Arbitrary Horn</div><div>9.2 Two-Dimensional Waveguides</div><div>9.2.1 General Solution</div><div>9.2.2 Rigid Walls9.2.3 Interpretation</div><div>9.2.4 Flexible Walls</div><div>9.2.5 Orthogonality and Signal Generation</div><div>9.3 Three-Dimensional Waveguides</div><div>9.3.1 General Analytical Procedure</div><div>9.3.2 Rectangular Waveguide</div><div>9.3.3 Circular Waveguide</div><div>9.4 Homework Exercises</div><div><br></div><div>10 Modal Analysis of Enclosures</div><div>10.1 Fundamental Issues</div><div>10.1.1 Wall-Induced Signals</div><div>10.1.2 Source Excitation</div><div>10.2 Frequency-Domain Analysis Using Forced Cavity Modes</div><div>10.2.1 Rectangular Enclosures</div><div>10.2.2 Spherical Cavities</div><div>10.2.3 Cylindrical Enclosures</div><div>10.3 Analysis Using Natural Cavity Modes</div><div>10.3.1 Equations Governing Cavity Modes</div><div>10.3.2 Orthogonality</div><div>10.3.3 Analysis of the Pressure Field</div><div>10.3.4 Rectangular Cavity</div><div>10.3.5 Cylindrical Cavity</div><div>10.3.6 Spherical Cavity</div><div>10.4 Approximate Methods</div><div>10.4.1 The Rayleigh Ratio and Its Uses</div><div>10.4.2 Dowell’s Approximation</div><div>10.5 Homework Exercises&lt;<div><br></div><div>11 Geometrical Acoustics</div><div>11.1 Basic Considerations: Wavefronts and Rays</div><div>11.1.1 Field Equations for an Inhomogeneous Fluid</div><div>11.1.2 Reflection and Refraction of Rays</div><div>11.2 Propagation in a Vertically Stratified Medium</div><div>11.2.1 Snell’s Law for Vertical Heterogeneity</div><div>11.2.2 Intensity and Focusing Factor</div><div>11.3 Arbitrary Heterogeneous Fluids</div><div>11.3.1 Ray Tracing Equations</div><div>11.3.2 Amplitude Dependence</div><div>11.4 Fermat’s Principle</div><div>11.5 Homework Exercises</div><div><br></div><div>12 Scattering</div><div>12.1 Background</div><div>12.2 Scattering by Heterogeneity</div><div>12.2.1 General Equations</div><div>12.2.2 The Born Approximation</div><div>12.3 Rayleigh Scattering Limit</div><div>12.3.1 The Rayleigh Limit of the Born Approximation</div><div>12.3.2 Mismatched Heterogeneous Region<div>12.3.3 Scattering from a Rigid Body</div><div>12.4 Measurements and Metrics</div><div>12.5 High Frequency Approximation</div><div>12.6 Scattering from Spheres</div><div>12.6.1 Stationary Spherical Scatterer</div><div>12.6.2 Scattering by an Elastic Spherical Shell</div><div>12.7 Homework Exercises</div><div><br></div><div>13 Nonlinear Acoustic Waves</div><div>13.1 Riemann’s Solution for Plane Waves</div><div>13.1.1 Analysis</div><div>13.1.2 Interpretation</div><div>13.1.3 Boundary and Initial Conditions</div><div>13.1.4 Equations of State</div><div>13.1.5 Quantitative Evaluations</div><div>13.2 Effects of Nonlinearity</div><div>13.2.1 Harmonic Generation</div><div>13.2.2 Shock Formation</div><div>13.2.3 Propagation of Weak Shocks</div><div>13.3 General Analytical Techniques</div><div>13.3.1 A Nonlinear Wave Equation</div><div>13.3.2 Frequency Domain Formulation</div><div>13.3.3 Regular Perturbation Series Expansion</div><div>13.3.4 Method of Strained Coordinates</div>13.4 Multidimensional Systems</div><div>13.4.1 Finite Amplitude Spherical Wave</div><div>13.4.2 Waves in Cartesian Coordinates</div><div>13.5 Further Studies<br><div>13.6 Homework Exercises</div><div><br></div><div>Appendix A: Curvilinear Coordinates</div><div>A.1 Spherical Coordinates</div><div>A.1.1 Gradient</div><div>A.1.2 Laplacian</div><div>A.1.3 Velocity and Acceleration</div><div>A.2 Cylindrical Coordinates</div><div>A.2.1 Transformations</div><div>A.2.2 Gradient</div><div>A.2.3 Laplacian</div><div>A.2.4 Velocity and Acceleration</div></div></div><div><br></div><div>Index</div></div>

Rubrieken

    Personen

      Trefwoorden

        Acoustics-A Textbook for Engineers and Physicists