,

Lectures on the Nearest Neighbor Method

Specificaties
Gebonden, blz. | Engels
Springer International Publishing | e druk, 2015
ISBN13: 9783319253862
Rubricering
Springer International Publishing e druk, 2015 9783319253862
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This text presents a wide-ranging and rigorous overview of nearest neighbor methods, one of the most important paradigms in machine learning. Now in one self-contained volume, this book systematically covers key statistical, probabilistic, combinatorial and geometric ideas for understanding, analyzing and developing nearest neighbor methods.

Gérard Biau is a professor at Université Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal).   

Specificaties

ISBN13:9783319253862
Taal:Engels
Bindwijze:gebonden
Uitgever:Springer International Publishing

Inhoudsopgave

Part I: Density Estimation.- Order Statistics and Nearest Neighbors.- The Expected Nearest Neighbor Distance.- The k-nearest Neighbor Density Estimate.- Uniform Consistency.- Weighted k-nearest neighbor density estimates.- Local Behavior.- Entropy Estimation.- Part II: Regression Estimation.- The Nearest Neighbor Regression Function Estimate.- The 1-nearest Neighbor Regression Function Estimate.- LP-consistency and Stone's Theorem.- Pointwise Consistency.- Uniform Consistency.- Advanced Properties of Uniform Order Statistics.- Rates of Convergence.- Regression: The Noisless Case.- The Choice of a Nearest Neighbor Estimate.- Part III: Supervised Classification.- Basics of Classification.- The 1-nearest Neighbor Classification Rule.- The Nearest Neighbor Classification Rule. Appendix.- Index.

Rubrieken

    Personen

      Trefwoorden

        Lectures on the Nearest Neighbor Method