<p>1. Preface </p><p>C Peers & P Kumar</p><p> 2. Epigenetic regulation of Carotid Body Oxygen Sensing: Clinical Implications </p><p>J. Nanduri, N. R. Prabhakar </p><p>3. Experimental observations on the biological significance of hydrogen sulfide in carotid body chemoreception. </p><p>T.Gallego-Martin, T. Agapito, M. Ramirez, E. Olea, S. Yubero, A. Rocher, A. Gomez-Niño, A. Obeso, C. Gonzalez </p><p> 4. The CamKKβ inhibitor STO609 causes artefacts in calcium imaging and selectively inhibits BKCa in mouse carotid body type I cells. </p><p>J. G. Jurcsisn, R. L. Pye, J. Ali, B. L. Barr and C. N. Wyatt </p><p> 5. Tissue dynamics of the carotid body under chronic hypoxia: a computational study </p><p>A. Porzionato, D. Guidolin, V. Macchi, G. Sarasin, A. Mazzatenta, C. Di Giulio, J. Lopez-Barneo, R. De Caro </p><p>6. Paracrine Signaling in Glial-like Type II cells of the Rat Carotid Body </p><p>S. Murali, M. Zhang, C. A. Nurse </p><p> 7. Selective μ and κ opioid agonists inhibit voltage-gated Ca<sup>2+</sup> entry in isolated rat carotid body type I cells </p><p>E. M. Ricker, R. L. Pye, B. L. Barr, C. N. Wyatt </p><p> 8. Measurement of ROS levels and membrane potential dynamics in the intact carotid body ex vivo</p><p>A. Bernardini, U. Brockmeier, E. Metzen, U. Berchner-Pfannschmidt, E. Harde, A. Acker-Palmer, D. Papkovsky, H. Acker, J. Fandrey </p><p> 9. Acutely administered leptin increases [Ca<sup>2+</sup>]<sub>i</sub> and changes membrane conductance via modulation of BKCa channels in rat carotid body type I cells </p><p>R.L. Pye, E.J. Dunn, E.M. Ricker, B.L. Barr, C.N. Wyatt \ </p><p>10. Functional properties of mitochondria in the type-1 cell and their role in oxygen sensing </p><p>K.J. Buckler & P.J. Turner </p><p>11. Potentiation of hypoxic pulmonary vasoconstriction by hydrogen sulfide precursors 3-mercaptopyruvate and D-cysteine is blocked by the cystathione g lyase inhibitor propargylglycine</p><p>J. Prieto-Lloret & P. I. Aaronson </p><p>12. Modulation of the LKB1-AMPK signalling pathway underpins hypoxic pulmonary vasoconstriction and pulmonary hypertension</p><p>A.M. Evans, S.A. Lewis, O.A. Ogunbayo, J. Moral-Sanz </p><p>13. Organismal Responses to Hypoxemic Challenges </p><p>R.S. Fitzgerald, G.A. Dehghani, S. Kiihl </p><p></p><p>14. Effect of lipopolysacchride (LPS) exposure on structure and function of the carotid body in newborn rats </p><p>Z.R. Master, K. Kesavan, A. Mason, M. Shirahata, E.B. Gauda </p><p>15. Hypoxic Ventilatory Reactivity in Experimental Diabetes </p><p>M. Pokorski, M. Pozdzik, J. Antosiewicz, A. Dymecka, A. Mazzatenta, C. Di Giulio</p><p><p>16. Adenosine receptor blockade by caffeine inhibits carotid sinus nerve chemosensory activity in chronic intermittent hypoxic animals </p><p>J.F. Sacramento, C. Gonzalez, M.C. Gonzalez-Martin and S.V. Conde</p><p><p>17. Neurotrophic properties, chemosensory responses and neurogenic niche of the human carotid body </p><p>P Ortega-Sáenz, J Villadiego, R Pardal, JJ Toledo-Aral and J López-Barneo</p><p><p>18. Is the carotid body a metabolic monitor? </p><p>M. Shirahata, W-Y Tang, M.-K. Shin, V. Polotsky </p><p><p>19. Lipopolysaccharide-induced ionized hypocalcemia and acute kidney injury in carotid chemo/baro-denervated rats </p><p>R. Fernández, P. Cortés, R. del Río, C. Acuña-Castillo, E.P. Reyes</p><p><p>20. Role of the Carotid Body Chemoreflex in the Pathophysiology of Heart Failure: A</p><p>Perspective from Animal Studies </p><p>H.D. Schultz, N. J. Marcus & R. Del Rio</p><p><p>21. A short-term fasting in neonates induces breathing instability and epigenetic modification in the carotid body</p><p>W.-Y. Tang, E. Kostuk, M. Shirahata</p><p><p>22. Carotid Body Chemoreflex Mediates Intermittent Hypoxia-Induced Oxidative Stress in the Adrenal Medulla </p><p>G.K. Kumar, Y-J. Peng, J. Nanduri, N.R. Prabhakar </p><p><p>23. The association between antihypertensive medication and blood pressure control in patients with obstructive sleep apnea</p><p>L.N. Diogo, P. Pinto, C. Bárbara, A.L. Papoila, E.C. Monteiro</p><p><p>24. An overview on the respiratory stimulant effects of caffeine and progesterone on response to hypoxia and apnea frequency in developing rats </p><p>A. Bairam, N.P. Uppari, S. Mubayed, V. Joseph </p><p>25. Hyperbaric oxygen therapy improves glucose homeostasis in type 2 diabetes patients: a likely involvement of the carotid bodies </p><p>P. Vera-Cruz, F. Guerreiro, M.J. Ribeiro, M.P. Guarino, S.V. Conde</p><p><p>26. Possible role of TRP channels in rat glomus cells </p><p>I. Kim, L. Fite, D. F. Donnelly, J. H. Kim, J. L. Carroll</p><p><p></p><p>27. Nitric oxide deficit is part of the maladaptive paracrine-autocrine response of the carotid body to intermittent hypoxia in sleep apnea </p><p>M.L. Fung </p><p>28. Respiratory control in the mdx mouse model of Duchenne muscular dystrophy </p><p>D. Burns, D. Edge, D. O’Malley, K.D. O’Halloran</p><p></p><p>29. Mild chronic intermittent hypoxia in Wistar rats evokes significant cardiovascular pathophysiology but no overt changes in carotid body-mediated respiratory responses </p><p>C. J. Ray, B. Dow, P. Kumar, A.M. Coney</p><p><p>30. Crucial role of the carotid body chemoreceptors on the development of high arterial blood pressure during chronic intermittent hypoxia</p><p>R. Iturriaga, D.C. Andrade, R. Del Rio</p><p><p>31. Relative contribution of nuclear and membrane progesterone receptors in respiratory control </p><p>R. Boukari, F. Marcouiller, V. Joseph</p><p><p>32. Inhibition of protein kinases AKT and ERK1/2 reduce the carotid body chemoreceptor response to hypoxia in adult rats</p><p>J. P. Iturri, V. Joseph, G. Rodrigo, A. Bairam, J. Soliz</p><p><p>33. Ecto-5’-nucleotidase, adenosine and transmembrane adenylyl cyclase signalling regulate basal carotid body chemoafferent outflow and establish the sensitivity to hypercapnia. </p><p>A.P.S. Holmes, A.R. Nunes, M.J. Cann, P.Kumar</p><p><p>34. T-type Ca<sup>2+</sup> channel regulation by CO: a mechanism for control of cell proliferation </p><p>H. Duckles, M.M. Al-Owais, J. Elies, E. Johnson, H.E. Boycott, M.L. Dallas, K.E. Porter, J.P. Boyle, J. L. Scragg, C. Peers</p><p></p><p>35. Glutamatergic Receptor Activation in the Commisural Nucleus Tractus Solitarii (cNTS) Mediates Brain Glucose Retention (BGR) Response to Anoxic Carotid Chemoreceptor (CChr) Stimulation in Rats </p><p>R. Cuéllar, S. Montero, S. Luquín, J. García-Estrada, O. Dobrovinskaya, V. Melnikov, M. Lemus, E. Roces de Álvarez-Buyll</p><p><p>36. Enhanced Serotonin (5HT) secretion in pulmonary neuroepithelial bodies from PHD-1 null mice </p><p>S. Livermore, J. Pan, H. Yeger, P. Ratcliffe, T. Bishop, E. Cutz </p><p><p>37. Selective expression of galanin in type I cells of the human carotid body </p><p>C. Di Giulio, G.D. Marconi, S. Zara, A. Di Tano, A. Porzionato, M. Pokorski, A. Cataldi, V. Macchi , A.Mazzatenta </p><p><p>38. Role of BK channels in murine carotid body neural responses in vivo. </p><p>L.E. Pichard, C.M. Crainiceanu, P. Pashai, E.W. Kostuk, A. Fujioka, M. Shirahata </p><p><p>39. Chronic intermittent hypoxia blunts the expression of ventilatory long term facilitation in sleeping rats </p><p>D. Edge, KD. O’Halloran </p><p><p>40. Heme oxygenase-1 influences apoptosis via CO-mediated inhibition of K<sup>+</sup> channels. </p><p>M.M. Al-Owais, M.L. Dallas, J.P. Boyle, J. L. Scragg , C. Peers </p><p><p>41. Inhibition of T-type Ca<sup>2+</sup> channels by hydrogen sulfide </p><p>J. Elies, JL Scragg, M. Dallas, D. Huang, S. Huang, JP Boyle, N. Gamper, C. Peers </p><p><p>42. GAL-021 and GAL-160 are efficacious in rat models of obstructive and central sleep apnea and inhibit BKCa in isolated rat carotid body glomus cells </p><p>M. Dallas, C. Peers, F.J. Golder, S. Baby, R. Grube, D.E. MacIntyre </p><p> </p><p>43. The human carotid body gene expression and function in signaling of hypoxia and inflammation</p><p>J. Kåhlin, S. Mkrtchian, A. Ebberyd, L. I. Eriksson, M. J. Fagerlund</p><p> </p><p>44. The Carotid Body Does Not Mediate The Acute Ventilatory Effects Of Leptin</p><p>E. Olea, M.J. Ribeiro, T.Gallego-Martin, S. Yubero, R. Rigual, JF. Masa, A. Obeso, S. V. Conde, C. Gonzalez </p><p> </p><p>45. Concluding Remarks</p><p>E. Gauda</p>