Advanced Materials for Printed Flexible Electronics

Specificaties
Paperback, blz. | Engels
Springer International Publishing | e druk, 2022
ISBN13: 9783030798062
Rubricering
Springer International Publishing e druk, 2022 9783030798062
€ 132,99
Levertijd ongeveer 8 werkdagen

Samenvatting

This book provides a comprehensive introduction to printed flexible electronics and their applications, including the basics of modern printing technologies, printable inks, performance characterization, device design, modeling, and fabrication processes. A wide range of materials used for printed flexible electronics are also covered in depth. Bridging the gap between the creation of structure and function, printed flexible electronics have been explored for manufacturing of flexible, stretchable, wearable, and conformal electronics device with conventional, 3D, and hybrid printing technologies. Advanced materials such as polymers, ceramics, nanoparticles, 2D materials, and nanocomposites have enabled a wide variety of applications, such as transparent conductive films, thin film transistors, printable solar cells, flexible energy harvesting and storage devices, electroluminescent devices, and wearable sensors. This book provides students, researchers and engineers with the information to understand the current status and future trends in printed flexible electronics, and acquire skills for selecting and using materials and additive manufacturing processes in the design of printed flexible electronics.

Specificaties

ISBN13:9783030798062
Taal:Engels
Bindwijze:paperback
Uitgever:Springer International Publishing

Inhoudsopgave

<p>Advanced materials for printed flexible electronics</p>

<p>Preface</p>

1 Fundamentals and design guides for printed flexible electronics<p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Abstract</p>

<p>1.1 Historical perspectives</p>

<p>1.2 Printing requirements for printable materials</p>

<p>1.2.1 Ink formulation </p>

1.2.2 Inks for flexible devices<p></p>

<p>1.2.3 Inks for stretchable devices&nbsp;&nbsp; </p>

<p>1.2.4 Inks for self-healing devices&nbsp;&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 1.2.5 Polymer substrate formulation</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 1.3 Design guidelines for flexible printed electronics</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 1.3.1 3D modeling and printing process control</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 1.3.2 Design guideline for 3D printing</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 1.3.3 Materials design for flexible and stretchable electronics</p>

<p>1.4 Fabrication technology for printed flexible electronics &nbsp; </p>

<p>1.4.1 Nozzle-based 3D printing technologies </p>

<p>1.4.2 Light-based 3D writing technologies</p>

<p>1.4.2.1 Two-photon lithography</p>

<p>1.4.2.2 Projection micro-stereolithography</p>

1.4.2.3 Continuous liquid interface production<p></p>

<p>1.4.3 Representative multi-material and hybrid 3D printing processes</p>

<p>1.4.4 Stress-controlled folding of 3D systems</p>

<p>1.4.4.1 4D printing</p>

<p>1.4.4.2 Micro- and nanoscale origami</p>

1.4.4.3 Mechanically guided assembly <p></p>

<p>References </p>

<p>Exercises </p>

<p>&nbsp;</p>

<p>2 Process and material characterization in printed flexible electronics</p>

&nbsp;&nbsp; Abstract<p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.1 Fluid characterization</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.1.1 Rheology and wetting behavior</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.1.1.1 Viscosity</p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.1.1.2 Surface energies and surface tensions<p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.1.1.3 Viscoelasticity</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.1.1.4&nbsp;&nbsp; Direct imaging&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.1.1.5 Dynamic measurements</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.1.2 Jet breakup and drop formation</p>

<p>2.1.3 Characteristics of jet fluids with solid fillers</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.1.3.1 Rheology of particle suspensions</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.1.3.2 Shear thinning fluids</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.1.3.3 Phase-changing inks and three-dimensional printing</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.1.4 Ink drop impact and reaction with substrate</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.1.4.1 Drop impact on powder and three-dimensional printed structures</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.1.4.2 Drop impact on textile surfaces</p>

<p>2.1.5 Solidification</p>

<p>2.1.6 Curing and sintering</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.1.6.1 Thermal sintering</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.1.6.2 Electrical sintering</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.1.6.3 Photonic sintering</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.1.6.4 Microwave sintering</p>

<p>2.2 Solid feedstock materials characterization techniques</p>

<p>2.2.1 Filament for fused deposition</p>

2.2.1.1 Filament diameter consistency<p></p>

<p>2.2.1.2 Density</p>

<p>2.2.1.3 Porosity</p>

<p>2.2.1.4 Moisture content</p>

<p>2.2.1.5 Thermal properties</p>

2.2.1.6 Microstructure analysis of composite filament<p></p>

<p>2.2.2 Powder for additive manufacturing processes</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.2.2.1 Powder Morphology</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.2.2.1.1 Sieve analysis</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.2.2.1.2 Microcopy analysis</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.2.2.1.3 Laser light diffraction</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.2.2.1.4 Influence of particle size and size distribution on part properties</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.2.2.1.5 Effect of particle shape and surface roughness</p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.2.2.2 Powder chemistry<p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.2.2.2.1 X-ray photoelectron spectroscopy</p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.2.2.2.2 Auger electron spectroscopy<p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.2.2.2.3 Energy dispersive X-Ray spectroscopy</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.2.2.2.4 Inductively coupled plasma optical emission spectroscopy</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.2.2.2.5 Inert gas fusion</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.2.2.2.6 Effect of powder chemistry</p>

<p>2.2.2.3 Powder microstructure</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.2.2.3.1 Metallography</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.2.2.3.2 X-ray diffraction</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.2.2.3.3 Thermal analysis methods</p>

<p>2.3 Aerosol jet printing process characterization</p>

<p>&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.3.1 Working principle of aerosol jet printing</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.3.1.1 Atomization approach</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.3.1.2 Materials transport, focusing and deposition</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.3.2 Aerosol jet printing parameters</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.3.2.1 Sheath and atomizer gas flow</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.3.2.2 Tool path and design rules&nbsp;&nbsp;&nbsp;&nbsp; </p>

<p>2.3.3 Future aerosol jet printing process modification and application</p>

2.4 Printed thin-film characterization <p></p>

<p>2.4.1 Optical characterization</p>

<p>2.4.1.1 Optical microscopy</p>

<p>2.4.1.2 UV-Vis Spectroscopy</p>

<p>2.4.2 Additional surface topography</p>

2.4.2.1 Stylus profilometry<p></p>

<p>2.4.2.2 Confocal and white-light microscopy</p>

<p>2.4.2.3 Atomic force microscopy</p>

<p>2.4.3 Electrical conductivity measurement</p>

<p>2.5 Mechanical characterization of printed flexible electronics</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.5.1 Determining materials constants</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.5.2 Bending deformation</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.5.3 Stretching deformation</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.5.4 Shear and twisting deformation</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.5.5 Adhesion, cohesion and scratch testing</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.5.6 Impact resistance</p>

<p>2.6 Durability of flexible electronics</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.6.1 Engineering stress distribution across layers</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.6.2 Nanoribbons and nanomembranes</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.6.3 Separation of brittle components</p>

<p>2.6.4&nbsp;&nbsp; Future perspectives</p>

<p>References</p>

Exercises <p></p>

<p>&nbsp;</p>

<p>&nbsp;</p>

<p>3 Conductive materials for printed flexible electronics</p>

<p>&nbsp;&nbsp; Abstract</p>

3.1 Introduction<p></p>

<p>3.2 Advanced metal-based materials for micro-/nano-scale 3D printing</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.2.1 Metal nanoparticles</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.2.1.1 Synthesis of metal nanoparticles</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.2.1.2 Stabilization of dispersed metal nanoparticles against aggregation</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.2.1.3 Stabilization of metal nanoparticles against oxidation</p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.2.1.4 Formulation of metal-based conductive inks<p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.2.1.5 Metal-based conductive inks for printing 3D structures</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.2.2 Metal nanowires</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.2.3 Liquid metal inks</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.2.3 Reactive metal inks</p>

<p>3.3 Carbon based materials</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.3.1 Graphene based inks</p>

<p>3.3.2 Carbon Nanotube based inks</p>

<p>3.4 Transparent oxide conductors</p>

<p>3.4.1 Low Temperature Solution Processing </p>

3.4.2 Doped Transparent Oxide Nanoparticles<p></p>

<p>3.5 Conductive polymer inks</p>

<p>3.6 Perspectives and future development trends of conductive inks</p>

<p>3.6.1 Traditional polymer thick film inks</p>

<p>3.6.2 Printing inks for in-mold electronics</p>

3.6.3 Stretchable conductive inks<p></p>

<p>3.6.3.1 Sputtering/etching or laser-cutting conductive films on stretchable substrates</p>

<p>3.6.3.2 Embedding stretchable conductive materials in stretchable substrates</p>

<p>3.6.3.3 Thinning or developing meandering patterns</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.6.3.3.1 Pre-strained substrate approach</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.6.3.3.2 Localized node bonding approach</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.6.3.3.3 Helix structure approach</p>

<p>3.6.4 Enabling limited stretchability by printing conductive ink on stretchable substrates</p>

<p>References</p>

<p>Exercises</p>

<p>&nbsp;</p>

4 Semiconducting and dielectric materials for printed flexible electronics<p></p>

<p>&nbsp;&nbsp; Abstract</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.1 Introduction</p>

<p>4.2 Flexible inorganic semiconducting materials</p>

<p>4.2.1 Thin films of silicon</p>

<p>4.2.2 Films of transparent oxides</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.2.2.1 ZnO films deposited from the gas phase</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.2.2.2 ZnO films spin-cast from colloidal solutions</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.2.2.3 Films of ZnO-based binary and ternary oxides</p>

<p>4.2.3 Films of chalcogenides</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.2.3.1 Films of chalcogenide nanocrystals</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.2.3.2 Films of chalcogenides derived from liquid precursors</p>

<p>4.2.4 Nanoscale inorganic semiconductors formed with bottom-up approaches</p>

<p>4.2.5 Nanoscale inorganic semiconductors formed with top-down approaches</p>

<p>4.3 Organic semiconductors for flexible electronics</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.3.1 Historical perspective</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.3.2 Material types</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.3.3 Basic properties of organic semiconductors</p>

<p>4.3.3.1 Physical properties</p>

<p>4.3.3.2 Optical properties</p>

<p>4.3.3.3 Charge carrier transport</p>

4.3.4 Architectures and properties of organic semiconductor devices<p></p>

<p>4.3.5 Organic semiconductor structural design in printed electronics</p>

<p>4.4 Printable organic small molecular semiconductors</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.4.1 p-type small molecular semiconductors</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.4.2 n-type small molecular semiconductors</p>

<p>4.5 Printable polymeric semiconductors</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.5.1 p-type conjugated polymer semiconductors</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.5.2 n-type conjugated polymers</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.5.3 Perspectives of solution-processed polymer semiconductors</p>

<p>4.6 Composite organic semiconductors</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.6.1 Polymer-fullerene bulk heterojunctions</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.6.2 Polymer-polymer semiconductor composites</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.6.3 Organic-inorganic composites of semiconductor nanocrystals</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.6.4 Nanoconfinement of polymer semiconductors with improved stretchability</p>

<p>References</p>

<p>Exercises</p>

<p>&nbsp;</p>

5 Insulating and encapsulating materials for printed flexible electronics <p></p>

<p>&nbsp;&nbsp; Abstract</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.1 Substrate materials&nbsp; </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.1.1 General requirements for flexible substrates</p>

<p>5.1.2 Types of substrate materials</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.1.2.1 Polymer substrate materials</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.1.2.2 Inorganic substrate materials</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.1.2.3 Fibrous substrate materials</p>

<p>5.2 Dielectric materials</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.2.1 Inorganic dielectrics</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.2.2 Polymer dielectrics</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.2.2.1 Poly(vinyl alcohol)</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.2.2.2 Cyanoethyl polymers</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.2.2.3 Poly(vinylidene fluoride) and its copolymers</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.2.3 Electrolyte dielectrics</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.2.3.1 Polymer electrolytes</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.2.3.2 Polyelectrolytes</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.2.3.3 Ionic liquids</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.2.3.4. Ion-gels</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.2.4 Hybrid dielectrics</p>

<p>5.2.4.1 Self-assembled nano-dielectrics</p>

<p>5.2.4.2 Inorganic/polymer blends</p>

<p>5.3 Encapsulation</p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.3.1 Encapsulation evaluation methods<p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.3.2 Traditional encapsulation approaches</p>

5.3.3 Chemical vapor deposition technology for encapsulation<p></p>

<p>5.3.4 Atomic layer deposition for encapsulation</p>

<p>5.3.5 Thin film encapsulation for flexible devices</p>

<p>References</p>

<p>Exercises </p>

&nbsp;<p></p>

<p>6 Printed flexible thin film transistors </p>

<p>&nbsp;&nbsp;&nbsp; Abstract</p>

<p>6.1 Types of transistors </p>

<p>6.1.1 Bipolar junction transistors</p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.1.1.1 NPN transistor <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;6.1.1.2 PNP transistor</p>

6.1.2 Field effect transistors<p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </p>

<p>6.1.2.1 Junction-field effect transistor</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.1.2.2 Metal-oxide-semiconductor field-effect transistor</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.1.3 Other emerging transistors</p>

<p>6.2 Structure and operation of thin film transistors</p>

<p>6.3 Printing techniques and printed components of thin film transistors</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.3.1 Printing techniques</p>

<p>6.3.2 Printed TFTs on rigid substrate</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.3.2.1 Printed semiconductor layer</p>

<p>6.3.2.1.1 Organic semiconductor</p>

<p>6.3.2.1.2 Carbon-based semiconductor</p>

<p>6.3.2.2 Printed dielectric layer</p>

6.3.2.3 Printed electrodes<p></p>

<p>6.3.2.4 Fully printed TFTs</p>

<p>6.3.3 Printed TFTs on flexible substrate</p>

<p>6.3.3.1 Polymer substrates</p>

<p>6.3.3.1.1 Partly printed TFTs on flexible substrate</p>

6.3.3.1.2 Fully printed TFTs on flexible substrate<p></p>

<p>6.3.3.2 Paper substrate</p>

<p>6.4 Printed organic thin film transistors</p>

<p>6.4.1 Materials for OTFTs</p>

<p>6.4.1.1 Organic semiconductors</p>

6.4.1.2 Gate dielectrics in OTFTs<p></p>

<p>6.4.1.3 Other materials used in OTFTs</p>

<p>6.4.2. Device structures used for OTFTs</p>

<p>6.4.3 Manufacturing process and integration of OTFTs</p>

<p>6.4.3.1 Processes compatible with established industry facilities</p>

<p>6.4.3.2 Full printing processes for OTFTs</p>

<p>6.4.3.3 Challenges and outlook for OTFT technologies</p>

6.5 Printed inorganic thin film transistors<p></p>

<p>6.5.1 Printed oxide transistors</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.5.1.1 Vacuum deposition- based metal oxide TFTs</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.5.1.2 Solution-processed n-type metal oxide semiconductors</p>

<p>6.5.1.2.1 Basics of sol-gel oxide chemistry</p>

<p>6.5.1.2.2 Low-temperature route for solution-processed n-type oxide semiconductors</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.5.1.2.2.1 Novel precursor approaches</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.5.1.2.2.2 Novel post-treatment methods</p>

<p>6.5.1.2.3 Current challenges in solution-processed n-type oxide semiconductors</p>

<p>6.5.1.3 Solution –processed p-type metal oxide semiconductors</p>

<p>6.5.1.3.1 Basics of p-type oxide semiconductors</p>

<p>6.5.1.3.2 Copper Oxide</p>

<p>6.5.1.3.3 Tin monoxide</p>

6.5.1.3.4 Nickel oxide<p></p>

<p>6.5.1.3.5 Current challenges in solution-processed p-type oxide semiconductors</p>

<p>6.5.2 Carbon nanotubes for thin film transistors</p>

<p>6.5.2.1 SWCNT-TFT fabrication</p>

<p>6.5.2.1.1 CNT Fabrication</p>

6.5.2.1.2 Separation of metallic and semiconducting CNTs&nbsp; <p></p>

<p>6.5.2.1.3 CNT film fabrication process</p>

<p>6.5.2.1.4 SWCNT-TFT structure and fabrication process</p>

<p>6.5.2.2 Electrical, optical and mechanical properties of SWCNT-TFTs</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.5.2.2.1 Electrical properties</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.5.2.2.2 Optical Properties</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.5.2.2.3 Mechanical properties</p>

<p>6.5.2.3 Outlook on carbon nanotubes based thin film transistors</p>

<p>6.5.2.3.1 Alignment</p>

<p>6.5.2.3.2 Metal contact</p>

<p>6.5.2.3.3 Semiconducting CNT purity</p>

6.5.2.3.4 N-Type Device<p></p>

<p>6.5.2.3.5 Integration</p>

<p>6.5.3 Thin film transistors based on graphene and graphene/semiconductor heterojunctions</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.5.3.1 Graphene acting as channel material in thin film transistors</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6.5.3.2 Graphene acting as electrode material in thin film transistors</p>

<p>6.5.3.2.1 Preparation of graphene/semiconductor heterojunctions</p>

<p>6.5.3.2.1.1 Mechanical stacking method</p>

6.5.3.2.1.2 Direct CVD growth of 2D nanomaterials heterostructures<p></p>

<p>6.5.3.2.2 Graphene/inorganic semiconductor heterojunction TFTs</p>

<p>6.5.3.2.3 Graphene/organic semiconductor heterojunction TFTs</p>

<p>6.5.3.3 Outlook on graphene based thin film transistors</p>

<p>6.5.4 High-mobility thin-film transistors based on multilayer 2D materials</p>

<p>6.5.4.1 Rationale</p>

<p>6.5.4.2 Common 2D materials for TFTs</p>

6.5.4.3 Applications of 2D TMDs TFTs<p></p>

<p>6.5.4.3.1 Flexible devices</p>

<p>6.5.4.3.2 Transparent devices</p>

<p>6.5.4.3.3 Opto-electronic devices: sensitive photodetectors</p>

<p>6.5.4.4 Outlook on high-mobility thin-film transistors</p>

<p>References</p>

<p>Exercises </p>

&nbsp;<p></p>

<p>7 Printed flexible light-emitting diodes</p>

<p>&nbsp;&nbsp; Abstract</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.1 Introduction</p>

<p>7.2 Working principle of organic light-emitting diodes </p>

<p>7.2.1 Basic light phenomena</p>

<p>7.2.1.1 Incandescence</p>

7.2.1.2 Luminescence<p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.2.1.2.1 Photoluminescence</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.2.1.2.2 Electroluminescence</p>

<p>7.2.2 OLED device structure</p>

<p>7.2.3 OLED working</p>

<p>7.2.4 OLED classification</p>

<p>7.2.5 OLED characterization</p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.2.5.1 Internal quantum efficiency<p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.2.5.2 External quantum efficiency</p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.2.5.3 Outcoupling efficiency<p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.2.5.4 Efficacy</p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.2.5.5 Lifetime issues<p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.2.5.6 Routine testing for performance evaluation of OLED device</p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.2.6 OLED fabrication techniques<p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.2.6.1 Physical vapor deposition</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.2.6.2 Screen printing</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.2.6.3 Ink-jet printing</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.2.6.4 In-line fabrication</p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.2.6.5 Roll to roll process<p></p>

<p>7.3 General materials and components of OLEDs</p>

7.3.1 Substrate<p></p>

<p>7.3.2 Anode </p>

<p>7.3.3 Cathode</p>

<p>7.3.4 Organic emissive materials</p>

<p>7.3.5 Amorphous molecular materials for hole- and electron-transporting</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.3.5.1 Hole-transporting amorphous molecular materials</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.3.5.2 Electron-transporting amorphous molecular materials</p>

<p>7.3.6 Solution-processable OLED materials</p>

<p>7.3.7 Encapsulation for OLEDs</p>

7.4 White lighting OLEDs<p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.4.1 White light emission mechanism</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.4.1.1 White light emission from small-molecule-doped polymer films</p>

<p>7.4.1.1.1 Fluorescence-emitting dopants</p>

<p>7.4.1.1.2 Phosphorescent emitters</p>

<p>7.4.1.1.3 Hybrid fluorescent blue/phosphorescent green and red systems</p>

<p>7.4.1.2 White emission from multiple light-emitting polymers</p>

<p>7.4.1.2.1 Blended polymeric systems</p>

<p>7.4.1.2.2 White light from polymer heterolayers</p>

7.4.1.3 Single-component polymer systems<p></p>

<p>7.4.1.3.1 Conjugated copolymers comprising main-chain chromophores</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.4.1.3.2 Copolymers with side-chain chromophores</p>

<p>7.4.1.4 Outlook on the development of polymer white OLEDs</p>

<p>7.4.2 White OLEDs based on small molecules</p>

<p>7.4.3 Light outcoupling improvement and efficiency limitation of white OLEDs</p>

<p>7.5 Flexible quantum dot light-emitting diodes</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.5.1 Material design for efficient QLEDs</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.5.2 Device structures and operation principles of QLEDs</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.5.3 Patterning technology of QDs for full-color displays</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.5.4 Flexible white QLEDs</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.5.5 Flexible transparent QLEDs</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.5.6 Potential applications of flexible QLEDs</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7.5.7 Outlook on flexible and wearable QLEDs</p>

<p>References</p>

<p>Exercises </p>

<p>&nbsp;</p>

8 Printable solar cells from solution-processible materials<p></p>

<p>&nbsp;&nbsp; Abstract</p>

<p>8.1 Operating principles of printable solar cells</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 8.1.1 Fundamentals of solar cells</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 8.1.2 Device structure</p>

<p>8.1.3 Operating principles</p>

<p>8.1.4 Performance characteristics</p>

8.1.4.1 Fill factor<p></p>

<p>8.1.4.2 Open circuit voltage</p>

<p>8.1.4.3 Short circuit current density</p>

<p>8.1.4.4 Absorption coefficient</p>

<p>8.1.4.5 Recombination and diffusion length</p>

8.1.4.6 Photovoltaic cell efficiency limit<p></p>

<p>8.2 Solution-processed organic polymeric solar cells</p>

<p>8.2.1 Historical perspective</p>

<p>8.2.2 Tandem solar cells&nbsp; </p>

<p>8.2.2.1 Interconnecting layer materials</p>

8.2.2.2 Processing multijnction stacks and light management<p></p>

<p>8.2.2.3 Active layer materials</p>

<p>8.2.2.4 Upscaling</p>

<p>8.3 Solution-processed inorganic CIGS/CZTS thin-film solar cells</p>

<p>8.4 Organic-inorganic hybrid perovskite solar cells</p>

<p>8.5 Outlook and future perspective</p>

<p>References</p>

Exercises<p></p>

<p>&nbsp;</p>

<p>9 Printed flexible electrochemical energy storage devices</p>

<p>9.1 Perspectives on electrochemical energy storage</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.1.1 Classification of electrochemical energy storage</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.1.1.1 Basic battery operation</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.1.1.2 Basic operation of capacitor and supercapacitor</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.1.2 Miniaturization of electrochemical energy storage devices for flexible/wearable electronics</p>

<p>9.2 3D printing for electrochemical energy storage applications</p>

<p>9.2.1 Printing technologies for electrochemical energy storage device fabrication</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.2.1.1 Basic 3D printing systems and processes</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.2.1.2 Materials considerations</p>

<p>9.2.2 Performance optimization strategies</p>

<p>9.2.2.1 Performance metrics</p>

<p>9.2.2.2 Optimization strategies</p>

9.2.3 Advances in 3D-printed electrochemical energy storage devices<p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.2.3.1 Sandwich-type configurations</p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.2.3.2 In-plane configurations<p></p>

<p>9.2.4 Outlook on printed electrochemical energy storage devices</p>

<p>9.3 Printed battery architectures</p>

<p>9.3.1 Printing technique adoption</p>

<p>9.3.2 Preparation of battery component inks</p>

<p>9.3.2.1 Printed electrodes</p>

<p>9.3.2.2 Printed electrolytes and separator membranes</p>

9.3.3 Electrochemical performances of printed batteries<p></p>

<p>9.3.4 Advances in printed battery systems and their applications</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.3.4.1 Zn-based batteries</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.3.4.2 Li-ion batteries</p>

<p>9.3.5 Perspectives and future development directions</p>

<p>9.4 Printed flexible supercapacitors</p>

<p>9.4.1 Device structures of printed supercapacitors</p>

9.4.2 Printable materials for supercapacitors<p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.4.2.1 Electrode materials</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.4.2.1.1 Carbon-based electrode materials</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.4.2.1.2 Metal-based electrode materials</p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.4.2.1.3 Conducting polymers<p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.4.2.1.4 2D nanomaterials beyond graphene</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.4.2.1.5 Metal–organic frameworks</p>

<p>9.4.2.2 Electrolytes</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.4.2.2.1 Aqueous gel polymer electrolytes</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.4.2.2.2 Organic gel polymer electrolytes</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.4.2.2.3 Ionic liquid-based gel polymer electrolytes</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.4.2.2.4 Redox-active gel electrolytes</p>

<p>9.4.2.3 Current collectors</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.4.2.3.1 Metal current collectors</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.4.2.3.2 Carbon-based current collectors</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.4.2.4 Substrates</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.4.2.4.1 Metal foils</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.4.2.4.2 Polymer-based plastic substrates</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.4.2.4.3 Paper substrates</p>

9.4.3 Advances of printed supercapacitors<p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.4.3.1 Inkjet printing</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.4.3.2 Screen printing</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.4.3.3 Three-dimensional (3D) printing</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.4.3.4 Transfer printing</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.4.3.5 Pen-based direct ink writing</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.4.3.6 Roll-to-roll (R2R) printing</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.4.3.7 Patterned coating methods</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.4.3.8 Outlook on printed supercapacitors</p>

<p>9.4.4 Applications of printed supercapacitors</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.4.4.1 Multifunctional supercapacitors</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.4.4.2 Supercapacitors working as power units for sensors</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9.4.4.3 Supercapacitors working as energy storage units for ambient energy sources</p>

<p>9.4.5 Challenges and future perspectives</p>

<p>9.5 Printed Supercapacitor Architectures </p>

9.5.1 Printable High–Surface Area Materials <p></p>

<p>9.5.2 Printable Supercapacitors </p>

<p>9.6 Challenges of Printed Electrochemical Systems </p>

<p>References</p>

<p>Exercises </p>

10 Printed flexible sensors and sensing systems <p></p>

<p>10.1 Introduction </p>

<p>10.2 Working principle of sensors</p>

<p>10.3 Printable materials and component integration</p>

<p>10.3.1 Substrates for flexible sensors</p>

10.3.2 Conducting materials<p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.3.2.1 Metals</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.3.2.2 Amorphous oxide conductors</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.3.2.3 Carbon conductors</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.3.2.4 Organic Conductors</p>

<p>10.3.3 Semiconductors</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.3.3.1 Metal oxide semiconductors</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.3.3.2 Organic semiconductors</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.3.3.3. Flexible silicon</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.3.3.4 Transition metal dichalcogenides</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.3.3.5 Black phosphorus</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.3.3.6 Perovskites</p>

<p>10.3.4 Dielectric materials</p>

<p>10.4 Printed flexible sensors </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.4.1 Printable pressure sensors</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.4.1.1 Piezoresistive sensors</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.4.1.2 Piezoelectric sensors</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.4.1.3 Piezocapacitive sensors</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10.4.1.4. Triboelectric sensors</p>

<p>10.4.2 Printable strain sensors</p>

<p>10.4.3 Temperature sensors</p>

<p>10.4.4 Humidity sensors</p>

<p>10.4.5 Magnetic sensors</p>

10.4.6 Chemical Sensors<p></p>

<p>10.4.7 Electromagnetic radiation sensors</p>

<p>10.4.8 Multi modal sensors</p>

<p>10.4.9 Electropotential sensors</p>

<p>10.4.10 Ultrasonic sensors</p>

10.5 Integration of printed sensors into systems<p></p>

<p>10.6 Future perspectives</p>

<p>References</p>

<p>Exercises </p>

<p>&nbsp;</p>

11 Printed flexible hybrid electronics <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp; Abstract</p>

<p>11.1 State-of-the-art development</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 11.1.1 The roles of printed electronics and standard silicon integrated circuits</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 11.1.2 The merit of flexible hybrid electronics</p>

<p>11.2 Core components of the flexible hybrid electronics</p>

<p>11.2.1 Substrate</p>

11.2.2 Inks and printing techniques<p></p>

<p>11.2.3 Printed sensors and circuits&nbsp;&nbsp;&nbsp;&nbsp; </p>

<p>11.3 Thinned silicon ICs and assembly process in FHE</p>

<p>11.3.1 Thinning Silicon ICs and Connecting to FHE</p>

<p>11.3.2 Conductive and nonconductive adhesives</p>

11.3.3 Assembly process for rigid components in FHE<p></p>

<p>11.4 Printed antennas for wireless power and communications</p>

<p>11.4.1. Printed antennas for communication purposes</p>

<p>11.4.2 Printed coils for wireless power transfer&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </p>

<p>11.5 Printed power sources - Batteries, solar cells, and energy harvesters</p>

<p>11.5.1 Printed energy-storage modules</p>

<p>11.5.2 Printed energy-harvesting modules </p>

11.6 Quality assurance<p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 11.6.1 High-resolution patterning</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 11.6.2 Uniformity</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 11.6.3 Flexibility/Stretchability</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 11.6.4 Durability</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 11.7 Reliability evaluation</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 11.8 Application</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 11.8.1 Wearable Health Monitoring with FHE</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 11.8.2 Industrial, environmental, and agricultural monitoring with FHE</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 11.8.3 Structural health monitoring with FHE</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 11.9 Challenges and future trends</p>

<p>References</p>

<p>Exercises </p>

12 Perspectives and current trends in printed electronics manufacturing<p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Abstract</p>

<p>12.1 Introduction </p>

<p>12.2 Electronic materials and components</p>

<p>12.3 Techniques and processes in printed electronics</p>

12.3.1 Techniques in printed electronics<p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 12.3.1.1 2D‑printing technologies</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 12.3.1.2 3D‑printing technologies</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 12.3.1.3 4D‑printing technologies</p>

<p>12.3.2 Processes in 3D‑printing electronics</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 12.4 Current trends in 3D‑printed electronics</p>

<p>12.4.1 Research and development</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 12.4.1.1 Common devices</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 12.4.1.2 Antennas</p>

<p>12.4.1.3 Flexible electronics</p>

<p>12.4.1.4 Batteries</p>

12.4.2 Integrated 3D-printig systems for mass production<p></p>

<p>References</p>

<p>Exercises</p>
€ 132,99
Levertijd ongeveer 8 werkdagen

Rubrieken

    Personen

      Trefwoorden

        Advanced Materials for Printed Flexible Electronics