<div>I. Introduction</div><div><br></div><div>II. Probabilities, moments, cumulants</div><div>A. Probabilities, observables, and moments</div><div>B. Transformation of random variables</div><div>C. Cumulants</div><div>D. Connection between moments and cumulants</div><div><br></div><div>III. Gaussian distribution and Wick’s theorem</div><div>A. Gaussian distribution</div><div>B. Moment and cumulant generating function of a Gaussian</div><div>C. Wick’s theorem</div><div>D. Graphical representation: Feynman diagrams</div><div>E. Appendix: Self-adjoint operators</div><div>F. Appendix: Normalization of a Gaussian</div><div><br></div><div>IV. Perturbation expansion</div><div>A. General case</div><div>B. Special case of a Gaussian solvable theory</div><div>C. Example: Example: “phi^3 + phi^4” theory</div><div>D. External sources</div><div>E. Cancellation of vacuum diagrams</div><div>F. Equivalence of graphical rules for n-point correlation and n-th moment</div><div>G. Example: “phi^3 + phi^4” theory</div><div>V. Linked cluster theorem</div><div>A. General proof of the linked cluster theorem</div><div>B. Dependence on j - external sources - two complimentary views</div><div>C. Example: Connected diagrams of the “phi^3 + phi^4” theory</div><br><div>VI. Functional preliminaries</div><div>A. Functional derivative</div><div>1. Product rule</div><div>2. Chain rule</div><div>3. Special case of the chain rule: Fourier transform</div><div>B. Functional Taylor series</div><div><br></div><div>VII. Functional formulation of stochastic differential equations</div><div>A. Onsager-Machlup path integral*</div><div>B. Martin-Siggia-Rose-De Dominicis-Janssen (MSRDJ) path integral</div><div>C. Moment generating functional</div><div>D. Response function in the MSRDJ formalism</div><div><br></div><div>VIII. Ornstein-Uhlenbeck process: The free Gaussian theory</div><div>A. Definition</div><div>B. Propagators in time domain</div><div>C. Propagators in Fourier domain</div><div><br></div><div>IX. Perturbation theory for stochastic differential equations</div><div>A. Vanishing moments of response fields</div><div>B. Vanishing response loops</div><div>C. Feynman rules for SDEs in time domain and frequency domain</div><div>D. Diagrams with more than a single external leg</div><div>E. Appendix: Unitary Fourier transform</div><div><br></div><div>X. Dynamic mean-field theory for random networks</div><div>A. Definition of the model and generating functional</div><div>B. Property of self-averaging</div>C. Average over the quenched disorder<div>D. Stationary statistics: Self-consistent autocorrelation of as motion of a particle in a potential</div><div>E. Transition to chaos</div><div>F. Assessing chaos by a pair of identical systems</div><div>G. Schrödinger equation for the maximum Lyapunov exponent</div><div>H. Condition for transition to chaos</div><div><br></div><div>XI. Vertex generating function</div><div>A. Motivating example for the expansion around a non-vanishing mean value</div><div>B. Legendre transform and definition of the vertex generating function Gamma</div><div>C. Perturbation expansion of Gamma</div><div>D. Generalized one-line irreducibility</div><div>E. Example</div>F. Vertex functions in the Gaussian case<div>G. Example: Vertex functions of the “phi^3 + phi^4”-theory</div><div>H. Appendix: Explicit cancellation until second order</div><div>I. Appendix: Convexity of W</div><div>J. Appendix: Legendre transform of a Gaussian</div><div><br></div><div>XII. Application: TAP approximation</div><div>Inverse problem</div><div><br></div><div>XIII. Expansion of cumulants into tree diagrams of vertex functions</div><div>A. Self-energy or mass operator Sigma</div><div><br></div><div>XIV. Loopwise expansion of the effective action - Tree level</div><div>A. Counting the number of loops</div>B. Loopwise expansion of the effective action - Higher numbers of loops<div>C. Example: phi^3 + phi^4-theory</div><div>D. Appendix: Equivalence of loopwise expansion and infinite resummation</div><div>E. Appendix: Interpretation of Gamma as effective action</div><div>F. Loopwise expansion of self-consistency equation</div><div><br></div><div>XV. Loopwise expansion in the MSRDJ formalism</div><div>A. Intuitive approach</div><div>B. Loopwise corrections to the effective equation of motion</div><div>C. Corrections to the self-energy and self-consistency</div><div>D. Self-energy correction to the full propagator</div><div>E. Self-consistent one-loop</div><div>F. Appendix: Solution by Fokker-Planck equation</div><br><div>XVI. Nomenclature</div><div><br></div><div>Acknowledgments</div><div><br></div><div>References</div>