Clinical Prediction Models

A Practical Approach to Development, Validation, and Updating

Specificaties
Paperback, blz. | Engels
Springer International Publishing | 2e druk, 2020
ISBN13: 9783030164010
Rubricering
Springer International Publishing 2e druk, 2020 9783030164010
Onderdeel van serie Statistics for Biology and Health
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

The second edition of this volume provides insight and practical illustrations on how modern statistical concepts and regression methods can be applied in medical prediction problems, including diagnostic and prognostic outcomes. Many advances have been made in statistical approaches towards outcome prediction, but  a sensible strategy is needed for model development, validation, and updating, such that prediction models can better support medical practice.

There is an increasing need for personalized evidence-based medicine that uses an individualized approach to medical decision-making.  In this Big Data era,  there is expanded access to large volumes of routinely collected data and an increased number of applications for prediction models, such as targeted early detection of disease and individualized approaches to diagnostic testing and treatment.  Clinical Prediction Models presents a practical checklist that needs to be considered for development of a valid prediction model. Steps include preliminary considerations such as dealing with missing values; coding of predictors; selection of main effects and interactions for a multivariable model; estimation of model parameters with shrinkage methods and incorporation of external data; evaluation of performance and usefulness; internal validation; and presentation formatting. The text also addresses common issues that make prediction models suboptimal, such as small sample sizes, exaggerated claims, and poor generalizability. 

The text is primarily intended for clinical epidemiologists and biostatisticians. Including many case studies and publicly available R code and data sets, the book is also appropriate as a textbook for a graduate course on predictive modeling in diagnosis and prognosis.  While practical in nature, the book also provides a philosophical perspective on data analysis in medicine that goes beyond predictive modeling. 

Updates to this new and expanded edition include:

• A discussion of Big Data and its implications for the design of prediction models

• Machine learning issues

• More simulations with missing ‘y’ values

• Extended discussion on between-cohort heterogeneity

• Description of ShinyApp

• Updated LASSO illustration

• New case studies 

Specificaties

ISBN13:9783030164010
Taal:Engels
Bindwijze:paperback
Uitgever:Springer International Publishing
Druk:2

Inhoudsopgave

Preface vii<div>Acknowledgements xi</div><div>Chapter 1 Introduction 1</div><div>1.1 Diagnosis, prognosis and therapy choice in medicine 1</div><div>1.1.1 Predictions for personalized evidence-based medicine 1</div><div>1.2 Statistical modeling for prediction 5</div><div>1.2.1 Model assumptions 5</div><div>1.2.2 Reliability of predictions: aleatory and epistemic uncertainty 6</div><div>1.2.3 Sample size 6</div>1.3 Structure of the book 8<div>1.3.1 Part I: Prediction models in medicine 8</div><div>1.3.2 Part II: Developing internally valid prediction models 8</div><div>1.3.3 Part III: Generalizability of prediction models 9</div><div>1.3.4 Part IV: Applications 9</div><div>Part I: Prediction models in medicine 11</div><div>Chapter 2 Applications of prediction models 13</div><div>2.1 Applications: medical practice and research 13</div><div>2.2 Prediction models for Public Health 14</div>2.2.1 Targeting of preventive interventions 14<div>*2.2.2 Example: prediction for breast cancer 14</div><div>2.3 Prediction models for clinical practice 17</div><div>2.3.1 Decision support on test ordering 17</div><div>*2.3.2 Example: predicting renal artery stenosis 17</div><div>2.3.3 Starting treatment: the treatment threshold 20</div><div>*2.3.4 Example: probability of deep venous thrombosis 20</div><div>2.3.5 Intensity of treatment 21</div><div>*2.3.6 Example: defining a poor prognosis subgroup in cancer 22</div><div>2.3.7 Cost-effectiveness of treatment 23</div><div>2.3.8 Delaying treatment 23</div><div>*2.3.9 Example: spontaneous pregnancy chances 24</div><div>2.3.10 Surgical decision-making 26</div><div>*2.3.11 Example: replacement of risky heart valves 27</div><div>2.4 Prediction models for medical research 28</div><div>2.4.1 Inclusion and stratification in a RCT 28</div><div>*2.4.2 Example: selection for TBI trials 29</div><div>2.4.3 Covariate adjustment in a RCT 30</div><div>2.4.4 Gain in power by covariate adjustment 31</div><div>*2.4.5 Example: analysis of the GUSTO-III trial 32</div><div>2.4.6 Prediction models and observational studies 32</div><div>2.4.7 Propensity scores 33</div>*2.4.8 Example: statin treatment effects 34<div>2.4.9 Provider comparisons 35</div><div>*2.4.10 Example: ranking cardiac outcome 35</div><div>2.5 Concluding remarks 35</div><div>Chapter 3 Study design for prediction modeling 37</div><div>3.1 Studies for prognosis 37</div><div>3.1.1 Retrospective designs 37</div><div>*3.1.2 Example: predicting early mortality in esophageal cancer 37</div><div>3.1.3 Prospective designs 38</div>*3.1.4 Example: predicting long-term mortality in esophageal cancer 39<div>3.1.5 Registry data 39</div><div>*3.1.6 Example: surgical mortality in esophageal cancer 39</div><div>3.1.7 Nested case-control studies 40</div><div>*3.1.8 Example: perioperative mortality in major vascular surgery 40</div><div>3.2 Studies for diagnosis 41</div><div>3.2.1 Cross-sectional study design and multivariable modeling 41</div><div>*3.2.2 Example: diagnosing renal artery stenosis 41</div><div>3.2.3 Case-control studies 41</div><div>*3.2.4 Example: diagnosing acute appendicitis 42</div><div>3.3 Predictors and outcome 42</div><div>3.3.1 Strength of predictors 42</div><div>3.3.2 Categories of predictors 42</div><div>3.3.3 Costs of predictors 43</div><div>3.3.4 Determinants of prognosis 44</div><div>3.3.5 Prognosis in oncology 44</div><div>3.4 Reliability of predictors 45</div><div>3.4.1 Observer variability 45</div><div>*3.4.2 Example: histology in Barrett’s esophagus 45</div><div>3.4.3 Biological variability 46</div><div>3.4.4 Regression dilution bias 46</div><div>*3.4.5 Example: simulation study on reliability of a binary predictor 46</div><div>3.4.6 Choice of predictors 47</div><div>3.5 Outcome 47</div><div>3.5.1 Types of outcome 47</div><div>3.5.2 Survival endpoints 48</div><div>*3.5.3 Examples: 5-year relative survival in cancer registries 48</div><div>3.5.4 Composite endpoints 49</div><div>*3.5.5 Example: composite endpoints in cardiology 49</div><div>3.5.6 Choice of prognostic outcome 49</div><div>3.5.7 Diagnostic endpoints 49</div><div>*3.5.8 Example: PET scans in esophageal cancer 50</div><div>3.6 Phases of biomarker development 50</div><div>3.7 Statistical power and reliable estimation 51</div><div>3.7.1 Sample size to identify predictor effects 51</div><div>3.7.2 Sample size for reliable modeling 53</div><div>3.7.3 Sample size for reliable validation 55</div><div>3.8 Concluding remarks 55</div><div>Chapter 4 Statistical models for prediction 57</div><div>4.1 Continuous outcomes 57</div><div>*4.1.1 Examples of linear regression 58</div><div>4.1.2 Economic outcomes 58</div><div>*4.1.3 Example: prediction of costs 58</div><div>4.1.4 Transforming the outcome 58</div><div>4.1.5 Performance: explained variation 59</div><div>4.1.6 More flexible approaches 60</div><div>4.2 Binary outcomes 61</div><div>4.2.1 R2 in logistic regression analysis 62</div><div>4.2.2 Calculation of R2 on the log likelihood scale 63</div><div>4.2.3 Models related to logistic regression 65</div><div>4.2.4 Bayes rule 65</div><div>4.2.5 Prediction with Naïve Bayes 66</div><div>4.2.6 Calibration and Naïve Bayes 67</div><div>*4.2.7 Logistic regression and Bayes 67</div><div>4.2.8 Machine learning: more flexible approaches 68</div><div>4.2.9 Classification and regression trees 69</div><div>*4.2.10 Example: mortality in acute MI patients 69</div><div>4.2.11 Advantages and disadvantages of tree models 70</div><div>4.2.12 Trees versus logistic regression modeling 70</div><div>*4.2.13 Other methods for binary outcomes 71</div><div>4.2.14 Summary on binary outcomes 72</div><div>4.3 Categorical outcomes 73</div><div>4.3.1 Polytomous logistic regression 73</div><div>4.3.2 Example: histology of residual masses 73</div><div>*4.3.3 Alternative models 75</div><div>*4.3.4 Comparison of modeling approaches 76</div><div>4.4 Ordinal outcomes 77</div><div>4.4.1 Proportional odds logistic regression 77</div><div>* 4.4.2 Relevance of the proportional odds assumption in RCTs 78</div><div>4.5 Survival outcomes 80</div><div>4.5.1 Cox proportional hazards regression 80</div><div>4.5.2 Prediction with Cox models 81</div><div>4.5.3 Proportionality assumption 81</div><div>4.5.4 Kaplan-Meier analysis 81</div><div>*4.5.5 Example: impairment after treatment of leprosy 82</div><div>4.5.6 Parametric survival 82</div><div>*4.5.7 Example: replacement of risky heart valves 83</div><div>4.5.8 Summary on survival outcomes 83</div><div>4.6 Competing risks 84</div><div>4.6.1 Actuarial and actual risks 84</div><div>4.6.2 Absolute risk and the Fine&Gray model 84</div><div>4.6.3 Example: Prediction of coronary heart disease incidence 85</div><div>4.6.4 Multi-state modeling 86</div><div>4.7 Dynamic predictions 87</div><div>4.7.1 Multi-state models and landmarking 87</div>4.7.2 Joint models 87<div>4.8 Concluding remarks 88</div><div>Chapter 5 Overfitting and optimism in prediction models 91</div><div>5.1 Overfitting and optimism 91</div><div>5.1.1 Example: surgical mortality in esophagectomy 92</div><div>5.1.2 Variability within one center 92</div><div>5.1.3 Variability between centers: noise vs. true heterogeneity 93</div><div>5.1.4 Predicting mortality by center: shrinkage 94</div><div>5.2 Overfitting in regression models 95</div><div>5.2.1 Model uncertainty and testimation bias 95</div><div>5.2.2 Other modeling biases 97</div><div>5.2.3 Overfitting by parameter uncertainty 97</div><div>5.2.4 Optimism in model performance 98</div><div>5.2.5 Optimism-corrected performance 99</div><div>5.3 Bootstrap resampling 100</div><div>5.3.1 Applications of the bootstrap 101</div><div>5.3.2 Bootstrapping for regression coefficients 102</div><div>5.3.3 Bootstrapping for prediction: optimism correction 102</div><div>5.3.4 Calculation of optimism-corrected performance 103</div><div>*5.3.5 Example: Stepwise selection in 429 patients 104</div><div>5.4 Cost of data analysis 105</div><div>*5.4.1 Degrees of freedom of a model 105</div><div>5.4.2 Practical implications 105</div><div>5.5 Concluding remarks 106</div><div>Chapter 6 Choosing between alternative models 109</div><div>6.1 Prediction with statistical models 109</div><div>6.1.1 Testing of model assumptions and prediction 110</div><div>6.1.2 Choosing a type of model 110</div><div>6.2 Modeling age – outcome relations 111</div><div>*6.2.1 Age and mortality after acute MI 111</div><div>*6.2.2 Age and operative mortality 112</div><div>*6.2.3 Age – outcome relations in other diseases 115</div><div>6.3 Head-to-head comparisons 116</div><div>6.3.1 StatLog results 116</div><div>*6.3.2 Cardiovascular disease prediction comparisons 117</div><div>*6.3.3 Traumatic brain injury modeling results 119</div><div>6.4 Concluding remarks 120</div><div>Part II: Developing valid prediction models 123</div><div>Checklist for developing valid prediction models 124</div><div>Chapter 7 Missing values 125</div><div>7.1 Missing values and prediction research 125</div><div>7.1.1 Inefficiency of complete case analysis 126</div><div>7.1.2 Interpretation of CC Analyses 127</div><div>7.1.3 Missing data mechanisms 127</div><div>7.1.4 Missing outcome data 128</div>7.1.5 Summary points 129<div>7.2 Prediction under MCAR, MAR and MNAR mechanisms 130</div><div>7.2.1 Missingness patterns 130</div><div>7.2.2 Missingness and estimated regression coefficients 132</div><div>7.2.4 Missingness and estimated performance 134</div><div>7.3 Dealing with missing values in regression analysis 135</div><div>7.3.1 Imputation principle 135</div><div>7.3.2 Simple and more advanced single imputation methods 136</div><div>7.3.3 Multiple imputation 137</div><div>7.4 Defining the imputation model 138</div><div>7.4.1 Types of variables in the imputation model 138</div><div>*7.4.2 Transformations of variables 139</div><div>7.4.3 Imputation models for SI 139</div><div>7.4.4 Summary points 139</div><div>7.5 Success of imputation under MCAR, MAR and MNAR 140</div><div>7.5.1 Imputation in a simple model 140</div><div>7.5.2 Other simulation results 140</div><div>* 7.5.3 Multiple predictors 140</div><div>7.6 Guidance to dealing with missing values in prediction research 142</div><div>7.6.1 Patterns of missingness 142</div><div>7.6.2 Simple approaches 143</div><div>7.6.3 More advanced approaches 143</div><div>7.6.4 Maximum fraction of missing values before omitting a predictor 143</div><div>7.6.5 Single or multiple imputation for predictor effects? 144</div><div>7.6.6 Single or multiple imputation for deriving predictions? 145</div><div>7.6.7 Missings and predictions for new patients 145</div><div>*7.6.8 Performance across multiple imputed data sets 146</div><div>7.6.9 Reporting of missing values in prediction research 146</div><div>7.7 Concluding remarks 148</div><div>7.7.1 Summary statements 148</div><div>*7.7.2 Available software and challenges 149</div><div>Chapter 8 Case study on dealing with missing values 151</div><div>8.1 Introduction 151</div><div>8.1.1 Aim of the IMPACT study 151</div><div>8.1.2 Patient selection 152</div><div>8.1.3 Potential predictors 152</div><div>8.1.4 Coding and time dependency of predictors 153</div><div>8.2 Missing values in the IMPACT study 153</div><div>8.2.1 Missing values in outcome 153</div><div>8.2.2 Quantification of missingness of predictors 154</div><div>8.2.3 Patterns of missingness 156</div><div>8.3 Imputation of missing predictor values 159</div><div>8.3.1 Correlations between predictors 159</div><div>8.3.2 Imputation model 160</div><div>8.3.3 Distributions of imputed values 160</div><div>*8.3.4 Multilevel imputation 161</div><div>8.4 Predictor effect: adjusted analyses 162</div><div>8.4.1 Adjusted analysis for complete predictors: age and motor score 163</div><div>8.4.2 Adjusted analysis for incomplete predictors: pupils 165</div><div>8.5 Predictions: multivariable analyses 165</div><div>*8.5.1 Multilevel analyses 166</div><div>8.6 Concluding remarks 166</div><div>Chapter 9 Coding of categorical and continuous predictors 169</div>9.1 Categorical predictors 169<div>9.1.1 Examples of categorical coding 170</div><div>9.2 Continuous predictors 171</div><div>*9.2.1 Examples of continuous predictors 171</div><div>9.2.2 Categorization of continuous predictors 172</div><div>9.3 Non-linear functions for continuous predictors 173</div><div>9.3.1. Polynomials 173</div><div>9.3.2. Fractional polynomials (FP) 174</div><div>9.3.3 Splines 175</div><div>*9.3.4 Example: functional forms with RCS or FP 176</div><div>9.3.5 Extrapolation and robustness 176</div><div>9.3.5 Preference for FP or RCS? 176</div><div>9.4 Outliers and winsorizing 177</div><div>9.4.1 Example: glucose values and outcome of TBI 178</div><div>9.5 Interpretation of effects of continuous predictors 180</div><div>*9.5.1 Example: predictor effects in TBI 181</div><div>9.6 Concluding remarks 182</div><div>9.6.1 Software 183</div><div>Chapter 10 Restrictions on candidate predictors 185</div><div>10.1 Selection before studying the predictor – outcome relation 185</div><div>10.1.1 Selection based on subject knowledge 185</div><div>*10.1.2 Examples: too many candidate predictors 185</div><div>10.1.3 Meta-analysis for candidate predictors 186</div><div>*10.1.4 Example:&nbsp; predictors in testicular cancer 186</div><div>10.1.5 Selection based on distributions 186</div><div>10.2 Combining similar variables 187</div><div>10.2.1 Subject knowledge for grouping 187</div><div>10.2.2 Assessing the equal weights assumption 188</div><div>10.2.3 Biologically motivated weighting schemes 189</div><div>10.2.4 Statistical combination 189</div><div>10.3 Averaging effects 190</div>*10.3.1 Example: Chlamydia trachomatis infection risks 190<div>*10.3.2 Example: acute surgery risk relevant for elective patients? 190</div><div>*10.4 Case study: family history for prediction of a genetic mutation 191</div><div>10.4.1 Clinical background and patient data 191</div>10.4.2 Similarity of effects 191<div>10.4.3 CRC and adenoma in a proband 194</div><div>10.4.5 Full prediction model for mutations 196</div><div>10.5 Concluding remarks 197</div><div>Chapter 11 Selection of main effects 199</div><div>11.1 Predictor selection 199</div><div>11.1.1 Reduction before modeling 199</div><div>11.1.2 Reduction while modeling 200</div><div>11.1.3 Collinearity 200</div><div>11.1.4 Parsimony 200</div><div>11.1.5 Non-significant candidate predictors 201</div><div>11.1.6 Summary points on predictor selection 201</div><div>11.2 Stepwise selection 202</div><div>11.2.1 Stepwise selection variants 202</div><div>11.2.2 Stopping rules in stepwise selection 202</div><div>11.3 Advantages of stepwise methods 203</div><div>11.4 Disadvantages of stepwise methods 204</div><div>11.4.1 Instability of selection 204</div><div>11.4.2 Testimation: Biased in selected coefficients 206</div><div>*11.4.3 Testimation: empirical illustrations 207</div><div>11.4.4 Misspecification of variability and p-values 208</div><div>11.5 Influence of noise variables 210</div><div>11.6 Univariate analyses and model specification 211</div><div>11.6.1 Pros and cons of univariate pre-selection 211</div><div>*11.6.2 Testing of predictors in a domain 212</div><div>11.7 Modern selection methods 212</div><div>*11.7.1 Bootstrapping for selection 212</div><div>*11.7.2 Bagging and boosting 212</div><div>*11.7.3 Bayesian model averaging (BMA) 213</div><div>11.7.4 Shrinkage of regression coefficients to zero 213</div><div>11.8 Concluding remarks 214</div><div>Chapter 12 Assumptions in regression models: Additivity and linearity 217</div><div>12.1 Additivity and interaction terms 217</div><div>12.1.1 Potential interaction terms to consider 218</div><div>12.1.2 Interactions with treatment 218</div><div>12.1.3 Other potential interactions 219</div><div>*12.1.4 Example: time and survival after valve replacement 220</div><div>12.2 Selection, estimation and performance with interaction terms 220</div><div>12.2.1 Example: age interactions in GUSTO-I 220</div><div>12.2.2 Estimation of interaction terms 221</div><div>12.2.3 Better prediction with interaction terms? 222</div><div>12.2.4 Summary points 223</div><div>12.3 Non-linearity in multivariable analysis 223</div><div>12.3.1 Multivariable restricted cubic splines (rcs) 224</div><div>12.3.2 Multivariable fractional polynomials (FP) 225</div><div>12.3.3 Multivariable splines in gam 225</div><div>12.4 Example: non-linearity in testicular cancer case study 226</div><div>*12.4.1 Details of multivariable FP and gam analyses 227</div><div>*12.4.2 GAM in univariate and multivariable analysis 228</div><div>*12.4.3 Predictive performance 229</div><div>*12.4.4 R code for non-linear modeling in testicular cancer example 230</div><div>12.5 Concluding remarks 230</div><div>12.5.1 Recommendations 231</div><div>Chapter 13 Modern estimation methods 233</div><div>13.1 Predictions from regression and other models 233</div><div>*13.1.1 Estimation with other modeling approaches 234</div><div>13.2 Shrinkage 234</div><div>13.2.1 Uniform shrinkage 235</div><div>13.2.2 Uniform shrinkage: illustration 236</div><div>13.3 Penalized estimation 236</div><div>*13.3.1 Penalized maximum likelihood estimation 237</div><div>13.3.2 Penalized ML: illustration 238</div><div>*13.3.3 Optimal penalty by bootstrapping 238</div><div>13.3.4 Firth regression 239</div><div>*13.3.5 Firth regression: illustration 239</div><div>*13.4.1 Estimation of a LASSO model 240</div><div>13.5 Elastic net 241</div><div>*13.5.1 Estimation of Elastic Net model 241</div><div>13.6 Performance after shrinkage 242</div><div>13.6.1 Shrinkage, penalization, and model selection 242</div><div>13.7 Concluding remarks 244</div><div>Chapter 14 Estimation with external information 247</div><div>Background 247</div><div>14.1 Combining literature and individual patient data (IPD) 247</div><div>14.1.1 A global prediction model 248</div><div>*14.1.2 A global model for traumatic brain injury 249</div><div>14.1.3 Developing a local prediction model 249</div><div>14.1.4 Adaptation of univariate coefficients 250</div><div>*14.1.5 Adaptation method 1 250</div><div>*14.1.6 Adaptation method 2 251</div><div>*14.1.7 Estimation of adaptation factors 251</div><div>*14.1.8 Simulation results 252</div><div>14.1.9 Performance of the adapted model 253</div><div>14.2 Case study: prediction model for AAA surgical mortality 254</div><div>14.2.1 Meta-analysis 254</div><div>14.2.2 Individual patient data analysis 255</div><div>14.2.3 Adaptation and clinical presentation 256</div><div>14.3 Alternative approaches 257</div><div>14.3.1 Overall calibration 257</div><div>14.3.2 Stacked regressions 257</div><div>14.3.3 Bayesian methods: using data priors to regression modeling 257</div><div>14.3.4 Example: predicting neonatal death 258</div><div>*14.3.5 Example: aneurysm study 258</div><div>14.4 Concluding remarks 258</div>Chapter 15 Evaluation of performance 261<div>15.1 Overall performance measures 261</div><div>15.1.1 Explained variation: R2 261</div><div>15.1.2 Brier score 262</div><div>15.1.3 Performance of testicular cancer prediction model 263</div><div>15.3.4 Assessment of moderate calibration 283</div><div>15.3.5 Assessment of strong calibration 283</div><div>15.3.6 Calibration of survival predictions 284</div><div>15.3.7 Example: calibration in testicular cancer prediction model 285</div><div>*15.3.8 R code for assessing calibration 286</div><div>15.3.9 Calibration and discrimination 286</div><div>15.4 Concluding remarks 287</div><div>15.4.1 Bibliographic notes 287</div><div>Chapter 16 Evaluation of clinical usefulness 289</div><div>16.1 Clinical usefulness 289</div><div>16.1.1 Intuitive approach to the cutoff 290</div><div>16.1.2 Decision-analytic approach: benefit vs harm 290</div><div>16.1.3 Accuracy measures for clinical usefulness 291</div><div>16.1.4 Decision curve analysis 292</div><div>16.1.5 Interpreting net benefit in decision curves 293</div><div>16.1.6 Example: clinical usefulness of prediction in testicular cancer 295</div><div>16.1.7 Decision curves for testicular cancer example 296</div><div>16.1.8 Verification bias and clinical usefulness 297</div><div>*16.1.9 R code 298</div><div>16.2 Discrimination, calibration, and clinical usefulness 300</div><div>16.2.1 Discrimination, calibration, and Net Benefit in the testicular cancer case study 300</div>16.2.2 Aims of prediction models and performance measures 301<div>16.2.2 Summary points 302</div><div>16.3 From prediction models to decision rules 303</div><div>16.3.1 Performance of decision rules 303</div><div>16.3.2 Treatment benefit in prognostic subgroups 305</div><div>16.3.3 Evaluation of classification systems 305</div><div>16.4 Concluding remarks 306</div><div>Chapter 17 Validation of prediction models 309</div><div>17.1 Internal versus external validation, and validity 309</div><div>17.1.1 Assessment of internal and external validity 310</div><div>17.2 Internal validation techniques 311</div><div>17.2.1 Apparent validation 311</div><div>17.2.3 Cross-validation 313</div><div>17.2.4 Bootstrap validation 314</div><div>17.2.5 Internal validation combined with imputation 315</div><div>17.3 External validation studies 315</div><div>17.3.1 Temporal validation 316</div><div>*17.3.2 Example: validation of a model for Lynch syndrome 316</div><div>17.3.3 Geographic validation 317</div><div>17.3.4 Fully independent validation 319</div><div>17.3.5 Reasons for poor validation 320</div><div>17.4 Concluding remarks 321</div><div>Chapter 18 Presentation formats 323</div><div>18.1 Prediction models versus decision rules 323</div><div>18.2 Clinical prediction models 325</div><div>18.2.1 Regression formulas 325</div><div>18.2.2 Confidence intervals for predictions 326</div><div>18.2.3 Nomograms 327</div><div>18.2.4 Score chart 329</div><div>18.2.5 Tables with predictions 330</div><div>18.2.6 Specific formats 331</div><div>18.2.7 Black box presentations 331</div><div>18.3 Case study: clinical prediction model for testicular cancer model 333</div><div>18.3.1 Regression formula from logistic model 333</div><div>18.3.2 Nomogram 334</div><div>*18.3.3 Score chart 334</div><div>18.3.4 Summary points 335</div><div>18.4 Clinical decision rules 335</div><div>18.4.1 Regression tree 335</div><div>18.4.2 Score chart rule 335</div><div>18.4.3 Survival groups 336</div><div>18.4.4 Meta-model 337</div><div>18.5 Concluding remarks 338</div><div>Part III: Generalizability of prediction models 341</div><div>Chapter 19 Patterns of external validity 343</div><div>19.1 Determinants of external validity 343</div><div>19.1.1 Case-mix 343</div><div>19.1.2 Differences in case-mix 343</div><div>19.1.3 Differences in regression coefficients 344</div><div>19.2.1 Simulation set-up 345</div><div>19.2.2 Performance measures 347</div><div>19.3 Distribution of predictors 348</div><div>19.3.1 More or less severe case-mix according to X 348</div><div>*19.3.2 Interpretation of testicular cancer validation 349</div><div>19.3.3 More or less heterogeneous case-mix according to X 349</div><div>19.3.4 More or less severe case-mix according to Z 350</div><div>19.3.5 More or less heterogeneous case-mix according to Z 351</div><div>19.4 Distribution of observed outcome y 353</div><div>19.5 Coefficients β 354</div><div>19.5.1 Coefficient of linear predictor &lt; 1 354</div><div>19.5.2 Coefficients β different 355</div><div>19.6 Summary of patterns of invalidity 356</div><div>19.6.1 Other scenarios of invalidity 357</div>19.7 Reference values for performance 358<div>19.7.1 Model-based performance: performance if the model is valid 358</div><div>19.7.2 Performance with refitting 358</div><div>*19.7.3 Examples: testicular cancer and TBI 359</div><div>*19.7.4 R code 360</div><div>19.8 Limited validation sample size 361</div><div>19.8.1 Uncertainty in validation of performance 361</div><div>*19.8.2 Estimating standard errors in validation studies 363</div><div>19.8.3 Summary points 363</div><div>19.9 Design of external validation studies 363</div><div>19.9.1 Power of external validation studies 364</div><div>*19.9.2 Calculating sample sizes for validation studies 365</div><div>19.9.3 Rules for sample size of validation studies 366</div><div>19.9.4 Summary points 367</div><div>19.10 Concluding remarks 368</div><div>Chapter 20 Updating for a new setting 371</div><div>20.1 Updating only the intercept 372</div><div>20.1.1 Simple updating methods 372</div><div>20.2 Approaches to more extensive updating 372</div><div>20.2.1 Eight updating methods for predicting binary outcomes 373</div><div>20.3 Validation and updating in GUSTO-I 375</div><div>20.3.1 Validity of TIMI-II model for GUSTO-I 376</div>20.3.2 Updating the TIMI-II model for GUSTO-I 377<div>20.3.3 Performance of updated models 378</div><div>*20.3.4 R code for updating methods 379</div><div>20.4 Shrinkage and updating 379</div><div>20.4.1 Shrinkage towards recalibrated values in GUSTO-I 380</div><div>*20.4.2 R code for shrinkage and penalization in updating 381</div><div>20.4.4 Bayesian updating 382</div><div>20.5 Sample size and updating strategy 383</div><div>*20.5.1 Simulations of sample size, shrinkage, and updating strategy 384</div><div>20.5.2 A closed test for the choice of updating strategy 386</div><div>20.6 Validation and updating of tree models 386</div><div>20.7 Validation and updating of survival models 388</div><div>*20.7.1 Validation of a simple index for non-Hodgkin's lymphoma 388</div><div>20.7.2 Updating the prognostic index 389</div><div>20.7.3 Recalibration for groups by time points 389</div><div>20.7.4 Recalibration with a Cox or Weibull regression model 390</div><div>20.7.6 Summary points 391</div><div>20.8 Continuous updating 392</div><div>*20.8.1 Precision and updating strategy 392</div><div>*20.8.2 Continuous updating in GUSTO-I 393</div><div>*20.8.3 Other dynamic modeling approaches 394</div><div>20.9 Concluding remarks 396</div><div>*20.9.1 Further illustrations of updating 397</div><div>Chapter 21 Updating for multiple settings 401</div><div>21.1 Differences in outcome 401</div><div>21.1.1 Testing for calibration-in-the large 401</div>*21.1.2 Illustration of heterogeneity in GUSTO-I 402<div>21.1.3 Updating for better calibration-in-the large 403</div><div>21.1.4 Empirical Bayes estimates 403</div><div>*21.1.5 Illustration of updating in GUSTO-I 404</div><div>21.1.6 Testing and updating of predictor effects 405</div><div>*21.1.7 Heterogeneity of predictor effects in GUSTO-I 405</div><div>*21.1.8 R code for random effect analyses in GUSTO-I 405</div><div>21.2 Provider profiling 406</div><div>21.2.1 Ranking of centers: the expected rank 407</div><div>*21.2.2 Example: provider profiling in stroke 408</div><div>*21.2.4 Estimation and interpreting differences between centers 409</div><div>*21.2.5 Ranking of centers 410</div><div>*21.2.6 R code for provider profiling 411</div>21.3 Concluding remarks 412<div>*21.3.1 Further literature 413</div><div>Part IV: Applications 415</div><div>Chapter 22 Case study on a prediction of 30-day mortality 417</div><div>22.1 GUSTO-I study 417</div><div>22.1.1 Acute myocardial infarction 417</div><div>*22.1.2 Treatment results from GUSTO-I 418</div><div>22.1.3 Prognostic modeling in GUSTO-I 418</div><div>22.2 General considerations of model development 421</div><div>22.2.1 Research question and intended application 421</div><div>22.2.2 Outcome and predictors 421</div><div>22.2.3 Study design and analysis 421</div><div>22.3 Seven modeling steps in GUSTO-I 423</div><div>22.3.1 Preliminary 423</div><div>22.3.2 Coding of predictors 423</div><div>22.3.3 Model specification 423</div><div>22.3.4 Model estimation 423</div><div>22.3.5 Model performance 424</div><div>22.3.6 Model validation 424</div><div>22.3.7 Presentation 425</div><div>22.3.8 Predictions 426</div><div>22.4 Validity 428</div><div>22.4.1 Internal validity: overfitting 428</div>22.4.2 External validity: generalizability 428<div>22.4.3 Summary points 429</div><div>22.5 Translation into clinical practice 429</div><div>22.5.1 Score chart for choosing thrombolytic therapy 429</div><div>22.5.2 From predictions to decisions 430</div><div>22.6 Concluding remarks 432</div><div>Chapter 23 Case study on survival analysis: prediction of cardiovascular events 435</div><div>23.1 Prognosis in the SMART study 435</div><div>*23.1.1 Patients in SMART 436</div><div>23.2 General considerations in SMART 438</div><div>23.2.1 Research question and intended application 438</div><div>23.2.2 Outcome and predictors 438</div><div>23.2.3 Study design and analysis 438</div><div>23.3 Preliminary modeling steps in the SMART cohort 440</div><div>23.3.1 Patterns of missing values 440</div><div>23.3.2 Imputation of missing values 441</div><div>23.3.3 R code 442</div><div>23.4 Coding of predictors 443</div><div>23.4.1 Extreme values 443</div><div>23.4.2 Transforming continuous predictors 444</div><div>23.4.3 Combining predictors with similar effects 445</div><div>23.4.4 R code 446</div><div>23.5.1 A full model 447</div><div>23.5.2 Impact of imputation 449</div><div>23.5.3 R code for full model and imputation variants 449</div><div>23.6 Model selection and estimation 451</div><div>23.6.1 Stepwise selection 451</div><div>23.6.2 LASSO for selection with imputed data 452</div><div>23.7 Model performance and internal validation 453</div><div>23.7.1 Estimation of optimism in performance 453</div><div>23.7.2 Model presentation 456</div><div>23.7.3 R code for presentations 457</div><div>23.8 Concluding remarks 458</div><div>Chapter 24 Overall lessons and data sets 461</div><div>24.1 Sample size 461</div><div>24.1.1 Model selection, estimation, and sample size 462</div><div>24.1.2 Calibration improvement by penalization 463</div><div>24.1.3 Poorer performance with more predictors 464</div><div>24.1.4 Model selection with noise predictors 465</div><div>24.1.5 Potential solutions 466</div><div>24.1.6 R code for model selection and penalization 466</div><div>24.2 Validation 467</div><div>24.2.1 Examples of internal and external validation 467</div><div>24.3 Subject matter knowledge versus machine learning 468</div><div>24.3.1 Exploiting subject matter knowledge 468</div><div>24.3.2 Machine learning and Big Data 470</div><div>24.4 Reporting of prediction models and risk of bias assessments 470</div><div>24.4.1 Reporting guidelines 470</div><div>24.4.2 Risk of bias assessment 472</div>24.5 Data sets 473<div>24.5.1 GUSTO-I prediction models 473</div><div>24.5.2 SMART case study 475</div><div>24.5.3 Testicular cancer case study 476</div><div>24.5.4 Abdominal aortic aneurysm case study 478</div><div>24.6 Concluding remarks 481</div><div>References 483</div><div>&nbsp;</div><div><br></div>

Rubrieken

    Personen

      Trefwoorden

        Clinical Prediction Models