Essential Mathematical Biology

Specificaties
Paperback, 335 blz. | Engels
Springer London | 1e druk, 2005
ISBN13: 9781852335366
Rubricering
Springer London 1e druk, 2005 9781852335366
Verwachte levertijd ongeveer 8 werkdagen

Samenvatting

This self-contained introduction to the fast-growing field of Mathematical Biology is written for students with a mathematical background. It sets the subject in a historical context and guides the reader towards questions of current research interest. A broad range of topics is covered including: Population dynamics, Infectious diseases, Population genetics and evolution, Dispersal, Molecular and cellular biology, Pattern formation, and Cancer modelling. Particular attention is paid to situations where the simple assumptions of homogenity made in early models break down and the process of mathematical modelling is seen in action.

Specificaties

ISBN13:9781852335366
Taal:Engels
Bindwijze:paperback
Aantal pagina's:335
Uitgever:Springer London
Druk:1

Inhoudsopgave

1. Single Species Population Dynamics.- 2. Population Dynamics of Interacting Species.- 3. Infectious Diseases.- 4. Population Genetics and Evolution.- 5. Biological Motion.- 6. Molecular and Cellular Biology.- 7. Pattern Formation.- 8. Tumour Modelling.- Further Reading.- A. Some Techniques for Difference Equations.- A.1 First-order Equations.- A.1.1 Graphical Analysis.- A.1.2 Linearisation.- A.2 Bifurcations and Chaos for First-order Equations.- A.2.1 Saddle-node Bifurcations.- A.2.2 Transcritical Bifurcations.- A.2.3 Pitchfork Bifurcations.- A.2.4 Period-doubling or Flip Bifurcations.- A.3 Systems of Linear Equations: Jury Conditions.- A.4 Systems of Nonlinear Difference Equations.- A.4.1 Linearisation of Systems.- A.4.2 Bifurcation for Systems.- B. Some Techniques for Ordinary Differential Equations.- B.1 First-order Ordinary Differential Equations.- B.1.1 Geometric Analysis.- B.1.2 Integration.- B.1.3 Linearisation.- B.2 Second-order Ordinary Differential Equations.- B.2.1 Geometric Analysis (Phase Plane).- B.2.2 Linearisation.- B.2.3 Poincaré-Bendixson Theory.- B.3 Some Results and Techniques for rath Order Systems.- B.3.1 Linearisation.- B.3.2 Lyapunov Functions.- B.3.3 Some Miscellaneous Facts.- B.4 Bifurcation Theory for Ordinary Differential Equations.- B.4.1 Bifurcations with Eigenvalue Zero.- B.4.2 Hopf Bifurcations.- C. Some Techniques for Partial Differential Equations.- C.1 First-order Partial Differential Equations and Characteristics.- C.2 Some Results and Techniques for the Diffusion Equation.- C.2.1 The Fundamental Solution.- C.2.2 Connection with Probabilities.- C.2.3 Other Coordinate Systems.- C.3 Some Spectral Theory for Laplace’s Equation.- C.4 Separation of Variables in Partial Differential Equations.- C.5 Systems of Diffusion Equations with Linear Kinetics.- C.6 Separating the Spatial Variables from Each Other.- D. Non-negative Matrices.- D.1 Perron-Frobenius Theory.- E. Hints for Exercises.

Rubrieken

    Personen

      Trefwoorden

        Essential Mathematical Biology