Learning and Generalisation

With Applications to Neural Networks

Specificaties
Paperback, 488 blz. | Engels
Springer London | 2e druk, 2010
ISBN13: 9781849968676
Rubricering
Springer London 2e druk, 2010 9781849968676
€ 216,99
Levertijd ongeveer 8 werkdagen

Samenvatting

How does a machine learn a new concept on the basis of examples? This second edition takes account of important new developments in the field. It also deals extensively with the theory of learning control systems, now comparably mature to learning of neural networks.

Specificaties

ISBN13:9781849968676
Taal:Engels
Bindwijze:paperback
Aantal pagina's:488
Uitgever:Springer London
Druk:2

Inhoudsopgave

1. Introduction.- 2. Preliminaries.- 3. Problem Formulations.- 4. Vapnik-Chervonenkis, Pseudo- and Fat-Shattering Dimensions.- 5. Uniform Convergence of Empirical Means.- 6. Learning Under a Fixed Probability Measure.- 7. Distribution-Free Learning.- 8. Learning Under an Intermediate Family of Probabilities.- 9. Alternate Models of Learning.- 10. Applications to Neural Networks..- 11. Applications to Control Systems.- 12. Some Open Problems.
€ 216,99
Levertijd ongeveer 8 werkdagen

Rubrieken

    Personen

      Trefwoorden

        Learning and Generalisation