,

Reverse Engineering in Control Design

Specificaties
Gebonden, 192 blz. | Engels
John Wiley & Sons | e druk, 2013
ISBN13: 9781848215238
Rubricering
John Wiley & Sons e druk, 2013 9781848215238
Onderdeel van serie FOCUS Series
Verwachte levertijd ongeveer 16 werkdagen

Samenvatting

Reverse Engineering in Control Design proposes practical approaches to building a standard H–infinity problem taking into account an initial controller. Such approaches allow us to mix various control objectives and to initialize procedures for a fixed–structure controller design. They are based on the Observer–Based Realization (OBR) of controllers. The interest of OBR from the controller implementation point of view is detailed and highlighted in this book through academic examples. An open–source toolbox is available to implement these approaches in Matlab®.
Throughout the book academic applications are proposed to illustrate the various basic principles. These applications have been chosen by the author for their pedagogic contents and demo files and embedded Matlab® functions can be downloaded so readers can run these illustrations on their personal computers.

Contents

1. Observer–based Realization of a Given Controller.
2. Cross Standard Form and Reverse Engineering.
3. Reverse Engineering for Mechanical Systems.
Appendix 1. A Preliminary Methodological Example.
Appendix 2. Discrete–time Case.
Appendix 3. Nominal State–feedback for Mechanical Systems.
Appendix 4. Help of Matlab® Functions.

About the Authors

Daniel Alazard is Professor in System Dynamics and Control at Institut Supérieur de l′Aéronautique et de l Espace (ISAE), Toulouse, France SUPAERO Graduate Program. His main research interests concern robust control, flexible structure control and their applications to various aerospace systems.

Specificaties

ISBN13:9781848215238
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:192

Inhoudsopgave

<p>NOMENCLATURE ix</p>
<p>INTRODUCTION&nbsp;xi</p>
<p>CHAPTER 1. OBSERVER–BASED REALIZATION OF A GIVEN CONTROLLER&nbsp;1</p>
<p>1.1. Introduction 1</p>
<p>1.2. Principle 3</p>
<p>1.3. A first illustration 9</p>
<p>1.4. Augmented–order controllers&nbsp;12</p>
<p>1.5. Discussion 16</p>
<p>1.6. In brief 19</p>
<p>1.7. Reduced–order controllers case&nbsp;20</p>
<p>1.8. Illustrations&nbsp;23</p>
<p>1.8.1. Illustration 1: plant state monitoring&nbsp;24</p>
<p>1.8.2. Illustration 2: controller switching 26</p>
<p>1.8.3. Illustration 3: smooth gain scheduling&nbsp;29</p>
<p>1.9. Reference inputs in observer–based realizations&nbsp;31</p>
<p>1.9.1. General results&nbsp;31</p>
<p>1.9.2. Illustration 33</p>
<p>1.10. Disturbance monitoring and rejection 36</p>
<p>1.10.1. General results 36</p>
<p>1.10.2. Illustration 40</p>
<p>1.11. Minimal parametric description of a linear system&nbsp;44</p>
<p>1.12. Selection of the observer–based realization&nbsp;47</p>
<p>1.12.1. Luenberger observer dynamics assignment 47</p>
<p>1.12.2. State–estimator dynamics assignment&nbsp;48</p>
<p>1.13. Conclusions&nbsp;49</p>
<p>1.14. Bibliography 49</p>
<p>CHAPTER 2. CROSS STANDARD FORM AND REVERSE ENGINEERING&nbsp;53</p>
<p>2.1. Introduction 53</p>
<p>2.2. Definitions 55</p>
<p>2.3. Low–order controller case (nK n) 56</p>
<p>2.3.1. Uniqueness condition&nbsp;58</p>
<p>2.3.2. Existence of a CSF 59</p>
<p>2.4. Augmented–order controller case (nK &gt; n)&nbsp;61</p>
<p>2.5. Illustration 61</p>
<p>2.5.1. Solving the inverse H –optimal control problem&nbsp;61</p>
<p>2.5.2. Improving K0 with frequency–domain specification 64</p>
<p>2.5.3. Improving K0 with phase lead&nbsp;66</p>
<p>2.6. Pseudo–cross standard form&nbsp;69</p>
<p>2.6.1. A reference model tracking problem&nbsp;69</p>
<p>2.6.2. Illustration&nbsp;70</p>
<p>2.6.3. Comment&nbsp;72</p>
<p>2.7. Conclusions&nbsp;72</p>
<p>2.8. Bibliography 73</p>
<p>CHAPTER 3. REVERSE ENGINEERING FOR MECHANICAL SYSTEMS&nbsp; 77</p>
<p>3.1. Introduction&nbsp;77</p>
<p>3.2. Context 78</p>
<p>3.3. Model, specifications and initial controller&nbsp;79</p>
<p>3.4. H design based on the acceleration sensitivity function&nbsp;81</p>
<p>3.4.1. General results 81</p>
<p>3.4.2. Illustration&nbsp;84</p>
<p>3.4.3. Analysis on an augmented model&nbsp;88</p>
<p>3.4.4. Illustration&nbsp;88</p>
<p>3.4.5. Synthesis on an augmented model&nbsp;89</p>
<p>3.4.6. Illustration 91</p>
<p>3.4.7. Taking into account a roll–off specification&nbsp;94</p>
<p>3.4.8. Illustration 96</p>
<p>3.4.9. Taking into account an integral term&nbsp;98</p>
<p>3.4.10. Illustration&nbsp;100</p>
<p>3.5. Mixed H2/H design based on the acceleration sensitivity function 102</p>
<p>3.5.1. The one degree of freedom case 103</p>
<p>3.5.2. First–order optimality conditions&nbsp;106</p>
<p>3.5.3. Numerical solution using Matlab&reg;&nbsp;118</p>
<p>3.5.4. Multi–variable case&nbsp;120</p>
<p>3.6. Aircraft lateral flight control design&nbsp;121</p>
<p>3.6.1. Model and specifications&nbsp;121</p>
<p>3.6.2. Basic H2/H control problem&nbsp;123</p>
<p>3.6.3. Augmented H control problem&nbsp;126</p>
<p>3.7. Conclusions&nbsp;130</p>
<p>3.8. Bibliography 131</p>
<p>CONCLUSIONS AND PERSPECTIVES 135</p>
<p>APPENDICES 139</p>
<p>Appendix 1. A Preliminary Methodological Example 141</p>
<p>Appendix 2. Discrete–time Case 149</p>
<p>Appendix 3. Nominal State–feedback for Mechanical Systems&nbsp;153</p>
<p>Appendix 4. Help of Matlab&reg; Functions&nbsp;159</p>
<p>LIST OF FIGURES&nbsp;169</p>
<p>INDEX&nbsp;175</p>

Rubrieken

    Personen

      Trefwoorden

        Reverse Engineering in Control Design