,

Applied Reliability V2

Applied Reliability

Specificaties
Gebonden, 362 blz. | Engels
John Wiley & Sons | e druk, 2012
ISBN13: 9781848214415
Rubricering
John Wiley & Sons e druk, 2012 9781848214415
Onderdeel van serie ISTE
Verwachte levertijd ongeveer 16 werkdagen

Samenvatting

This second book of a 3–volume set on Fracture Mechanics completes the first volume through the analysis of adjustment tests suited to correctly validating the justified use of the laws conforming to the behavior of the materials and structures under study.
This volume focuses on the vast range of statistical distributions encountered in reliability. Its aim is to run statistical measurements, to present a report on enhanced measures in mechanical reliability and to evaluate the reliability of repairable or unrepairable systems. To achieve this, the author presents a theoretical and practice–based approach on the following themes: criteria of failures; Bayesian applied probability; Markov chains; Monte Carlo simulation as well as many other solved case studies.
This book distinguishes itself from other works in the field through its originality in presenting an educational approach which aims at helping practitioners both in academia and industry. It is intended for technicians, engineers, designers, students, and teachers working in the fields of engineering and vocational education. The main objective of the author is to provide an assessment of indicators of quality and reliability to aid in decision–making. To this end, an intuitive and practical approach, based on mathematical rigor, is recommended.

Specificaties

ISBN13:9781848214415
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:362
Serie:ISTE

Inhoudsopgave

<p>Preface&nbsp;xi</p>
<p>Glossary&nbsp;xix</p>
<p>Chapter 1. Fracture Mechanisms by Fatigue&nbsp; 1</p>
<p>1.1. Introduction&nbsp;1</p>
<p>1.2. Principal physical mechanisms of cracking by fatigue&nbsp;2</p>
<p>1.2.1. Fracture mechanics&nbsp;2</p>
<p>1.2.2. Criteria of fracture (plasticity) in mechanics&nbsp;4</p>
<p>1.3. Modes of fracture&nbsp;7</p>
<p>1.3.1. Directed works&nbsp;11</p>
<p>1.4. Fatigue of metals: analytical expressions used in reliability&nbsp;13</p>
<p>1.4.1. W&ouml;hler s law&nbsp;14</p>
<p>1.4.2. Basquin s law (1910)&nbsp;15</p>
<p>1.4.3. Stromayer s law (1914)&nbsp;16</p>
<p>1.4.4. Palmgren s law&nbsp;16</p>
<p>1.4.5. Corson s law (1949)&nbsp;17</p>
<p>1.4.6. Bastenaire s law&nbsp;17</p>
<p>1.4.7. Weibull s law&nbsp;18</p>
<p>1.4.8. Henry s law&nbsp;18</p>
<p>1.4.9. Corten and Dolen s law&nbsp;19</p>
<p>1.4.10. Manson Coffin s law&nbsp;20</p>
<p>1.5. Reliability models commonly used in fracture mechanics by fatigue&nbsp;22</p>
<p>1.5.1. Coffin Manson s model for the analysis of crack propagation&nbsp;24</p>
<p>1.5.2. Neuber s relation (1958)&nbsp;25</p>
<p>1.5.3. Arrhenius model 28</p>
<p>1.5.4. Miner s law (1954)&nbsp;29</p>
<p>1.6. Main common laws retained by fracture mechanics&nbsp;31</p>
<p>1.6.1. Fost and Dugdale s law&nbsp;33</p>
<p>1.6.2. McEvily s law (1979)&nbsp;34</p>
<p>1.6.3. Paris s law 35</p>
<p>1.6.4. G.R. Sih s law 39</p>
<p>1.7. Stress intensity factors in fracture mechanics&nbsp;40</p>
<p>1.7.1. Maddox s model 40</p>
<p>1.7.2. Gross and Srawley s model 41</p>
<p>1.7.3. Lawrence s model&nbsp;41</p>
<p>1.7.4. Martin and Bousseau s model 42</p>
<p>1.7.5. Gurney s model&nbsp;43</p>
<p>1.7.6. Engesvik s model 43</p>
<p>1.7.7. Yamada and Albrecht s model&nbsp;44</p>
<p>1.7.8. Tomkins and Scott s model 45</p>
<p>1.7.9. Harrison s model 46</p>
<p>1.8. Intrinsic parameters of the material (C and m)&nbsp;46</p>
<p>1.9. Fracture mechanics elements used in reliability&nbsp;48</p>
<p>1.10. Crack rate (life expectancy) and s.i.f. (K )&nbsp;51</p>
<p>1.10.1. Simplified version of Taylor s law for machining&nbsp;54</p>
<p>1.11. Elements of stress (S) and resistance theory (R)&nbsp;55</p>
<p>1.11.1. Case study, part 2 suspension bridge (Cirta)&nbsp;55</p>
<p>1.11.2. Case study: failure surface of geotechnical materials&nbsp;57</p>
<p>1.12. Conclusion&nbsp;65</p>
<p>1.13. Bibliography&nbsp;65</p>
<p>Chapter 2. Analysis Elements for Determining the Probability of Rupture by Simple Bounds&nbsp; 69</p>
<p>2.1. Introduction&nbsp;69</p>
<p>2.1.1. First–order bounds or simple bounds: systems in series&nbsp;70</p>
<p>2.1.2. First–order bounds or simple bounds: systems in parallel&nbsp;70</p>
<p>2.2. Second–order bounds or Ditlevsen s bounds&nbsp;70</p>
<p>2.2.1. Evaluating the probability of the intersection of two events 71</p>
<p>2.2.2. Estimating multinomial distribution normal distribution&nbsp;74</p>
<p>2.2.3. Binomial distribution&nbsp;74</p>
<p>2.2.4. Approximation of &ocirc;2 (for m 3)&nbsp;76</p>
<p>2.3. Hohenbichler s method&nbsp;78</p>
<p>2.4. Hypothesis test, through the example of a normal average with unknown variance&nbsp;80</p>
<p>2.4.1. Development and calculations&nbsp;82</p>
<p>2.5. Confidence interval for estimating a normal mean: unknown variance&nbsp;84</p>
<p>2.6. Conclusion&nbsp;85</p>
<p>2.7. Bibliography&nbsp;85</p>
<p>Chapter 3. Analysis of the Reliability of Materials and Structures by the Bayesian Approach&nbsp;87</p>
<p>3.1. Introduction to the Bayesian method used to evaluate reliability&nbsp;87</p>
<p>3.2. Posterior distribution and conjugate models&nbsp;88</p>
<p>3.2.1. Independent events&nbsp;91</p>
<p>3.2.2. Counting diagram&nbsp;95</p>
<p>3.3. Conditional probability or Bayes law 99</p>
<p>3.4. Anterior and posterior distributions&nbsp;103</p>
<p>3.5. Reliability analysis by moments methods, FORM/SORM&nbsp;106</p>
<p>3.6. Control margins from the results of fracture mechanics 107</p>
<p>3.7. Bayesian model by exponential gamma distribution&nbsp;110</p>
<p>3.8. Homogeneous Poisson process and rate of occurrence of failure&nbsp;112</p>
<p>3.9. Estimating the maximum likelihood&nbsp;113</p>
<p>3.9.1. Type I censored exponential model&nbsp;113</p>
<p>3.9.2. Estimating the MTBF (or rate of repair/rate of failure)&nbsp;113</p>
<p>3.9.3. MTBF and confidence interval&nbsp;114</p>
<p>3.10. Repair rate or ROCOF 117</p>
<p>3.10.1. Power law: non–homogeneous Poisson process 118</p>
<p>3.10.2. Distribution law gamma (reminder)&nbsp;119</p>
<p>3.10.3. Bayesian model of a priori gamma distribution 122</p>
<p>3.10.4. Distribution tests for exponential life (or HPP model)&nbsp;124</p>
<p>3.10.5. Bayesian procedure for the exponential system model&nbsp;126</p>
<p>3.11. Bayesian case study applied in fracture mechanics&nbsp;131</p>
<p>3.12. Conclusion&nbsp;137</p>
<p>3.13. Bibliography 138</p>
<p>Chapter 4. Elements of Analysis for the Reliability of Components by Markov Chains&nbsp;&nbsp;141</p>
<p>4.1. Introduction&nbsp;141</p>
<p>4.2. Applying Markov chains to a fatigue model&nbsp;142</p>
<p>4.3. Case study with the help of Markov chains for a fatigue model 145</p>
<p>4.3.1. Position of the problem&nbsp;146</p>
<p>4.3.2. Discussion&nbsp;149</p>
<p>4.3.3. Explanatory information&nbsp;149</p>
<p>4.3.4. Directed works&nbsp;154</p>
<p>4.3.5. Approach for solving the problem 155</p>
<p>4.3.6. Which solution should we choose?&nbsp;156</p>
<p>4.4. Conclusion&nbsp;157</p>
<p>4.5. Bibliography&nbsp;157</p>
<p>Chapter 5. Reliability Indices&nbsp;&nbsp;159</p>
<p>5.1. Introduction&nbsp;159</p>
<p>5.2. Design of material and structure reliability&nbsp;161</p>
<p>5.2.1. Reliability of materials and structures 162</p>
<p>5.3. First–order reliability method&nbsp;165</p>
<p>5.4. Second–order reliability method 165</p>
<p>5.5. Cornell s reliability index&nbsp;166</p>
<p>5.6. Hasofer Lind s reliability index&nbsp;168</p>
<p>5.7. Reliability of material and structure components&nbsp;171</p>
<p>5.8. Reliability of systems in parallels and series&nbsp;172</p>
<p>5.8.1. Parallel system&nbsp;172</p>
<p>5.8.2. Parallel system (m/n) 173</p>
<p>5.8.3. Serial assembly system 173</p>
<p>5.9. Conclusion&nbsp;179</p>
<p>5.10. Bibliography&nbsp;179</p>
<p>Chapter 6. Fracture Criteria Reliability Methods through an Integral Damage Indicator 181</p>
<p>6.1. Introduction&nbsp;181</p>
<p>6.2. Literature review of the integral damage indicator method&nbsp;185</p>
<p>6.2.1. Brief recap of the FORM/SORM method&nbsp;186</p>
<p>6.2.2. Recap of the Hasofer Lind index method&nbsp;187</p>
<p>6.3. Literature review of the probabilistic approach of cracking law parameters in region II of the Paris law 188</p>
<p>6.4. Crack spreading by a classical fatigue model&nbsp;190</p>
<p>6.5. Reliability calculations using the integral damage indicator method&nbsp;197</p>
<p>6.6. Conclusion&nbsp;199</p>
<p>6.7. Bibliography&nbsp;201</p>
<p>Chapter 7. Monte Carlo Simulation&nbsp;&nbsp;205</p>
<p>7.1. Introduction&nbsp; 205</p>
<p>7.1.1. From the origin of the Monte Carlo method!&nbsp;205</p>
<p>7.1.2. The terminology 206</p>
<p>7.2. Simulation of a singular variable of a Gaussian&nbsp;209</p>
<p>7.2.1. Simulation of non–Gaussian variable 210</p>
<p>7.2.2. Simulation of correlated variables 210</p>
<p>7.2.3. Simulation of correlated Gaussian variables&nbsp;&nbsp;210</p>
<p>7.2.4. Simulation of correlated non–Gaussian variables 210</p>
<p>7.3. Determining safety indices using Monte Carlo simulation&nbsp;212</p>
<p>7.3.1. General tools and problem outline 212</p>
<p>7.3.2. Presentation and discussion of our experimental results&nbsp;214</p>
<p>7.3.3. Use of the randomly selected numbers table&nbsp;215</p>
<p>7.4. Applied mathematical techniques to generate random numbers by MC simulation on four principle statistical laws&nbsp;220</p>
<p>7.4.1. Uniform law&nbsp;&nbsp;220</p>
<p>7.4.2. Laplace Gauss (normal) law 221</p>
<p>7.4.3. Exponential law 222</p>
<p>7.4.4. Initial value control&nbsp;222</p>
<p>7.5. Conclusion&nbsp;231</p>
<p>7.6. Bibliography&nbsp;232</p>
<p>Chapter 8. Case Studies&nbsp;&nbsp;235</p>
<p>8.1. Introduction&nbsp;235</p>
<p>8.2. Reliability indicators ( ) and MTBF&nbsp;235</p>
<p>8.2.1. Model of parallel assembly 235</p>
<p>8.2.2. Model of serial assembly&nbsp;236</p>
<p>8.3. Parallel or redundant model&nbsp;237</p>
<p>8.4. Reliability and structural redundancy: systems without distribution 239</p>
<p>8.4.1. Serial model&nbsp;239</p>
<p>8.5. Rate of constant failure&nbsp;240</p>
<p>8.5.1. Reliability of systems without repairing: parallel model&nbsp;243</p>
<p>8.6. Reliability applications in cases of redundant systems&nbsp;248</p>
<p>8.6.1. Total active redundancy&nbsp;252</p>
<p>8.6.2. Partial active redundancy&nbsp;253</p>
<p>8.7. Reliability and availability of repairable systems&nbsp;258</p>
<p>8.8. Quality assurance in reliability 264</p>
<p>8.8.1. Projected analysis of reliability&nbsp;264</p>
<p>8.9. Birnbaum Saunders distribution in crack spreading&nbsp;268</p>
<p>8.9.1. Probability density and distribution function (Birnbaum Saunders cumulative distribution through cracking)&nbsp;269</p>
<p>8.9.2. Graph plots for the four probability density functions and distribution functions&nbsp;270</p>
<p>8.10. Reliability calculation for ages ( ) in hours of service, Ri( ) = ?&nbsp;270</p>
<p>8.11. Simulation methods in mechanical reliability of structures and materials: the Monte Carlo simulation method 275</p>
<p>8.11.1. Weibull law&nbsp;277</p>
<p>8.11.2. Log–normal Law (of Galton)&nbsp;278</p>
<p>8.11.3. Exponential law&nbsp; 278</p>
<p>8.11.4. Generation of random numbers&nbsp;279</p>
<p>8.12. Elements of safety via the couple: resistance and stress (R, S) 284</p>
<p>8.13. Reliability trials&nbsp;286</p>
<p>8.13.1. Controlling risks and efficiency in mechanical reliability 288</p>
<p>8.13.2. Truncated trials 291</p>
<p>8.13.3. Censored trials&nbsp;292</p>
<p>8.13.4. Trial plan 293</p>
<p>8.13.5. Coefficients for the trial s acceptance plan&nbsp;296</p>
<p>8.13.6. Trial s rejection plan (in the same conditions)&nbsp;297</p>
<p>8.13.7. Trial plan in reliability and K Pearson test 2&nbsp;299</p>
<p>8.14. Reliability application on speed reducers (gears)&nbsp;300</p>
<p>8.14.1. Applied example on hydraulic motors&nbsp;303</p>
<p>8.15. Reliability case study in columns under stress of buckling&nbsp;305</p>
<p>8.15.1. RDM solution&nbsp;307</p>
<p>8.15.2. Problem outline and probabilistic solution (reliability and error)&nbsp;309</p>
<p>8.16. Adjustment of least squared for nonlinear functions 311</p>
<p>8.16.1. Specific case study 1: a Weibull law with two parameters&nbsp;311</p>
<p>8.17. Conclusion&nbsp;314</p>
<p>8.18. Bibliography&nbsp;314</p>
<p>Appendix 317</p>
<p>Index&nbsp;333</p>

Rubrieken

    Personen

      Trefwoorden

        Applied Reliability V2