,

Modeling Living Systems: From Cell to Ecosystem

From Cell to Ecosystem

Specificaties
Gebonden, 640 blz. | Engels
John Wiley & Sons | e druk, 2012
ISBN13: 9781848214231
Rubricering
John Wiley & Sons e druk, 2012 9781848214231
Onderdeel van serie ISTE
Verwachte levertijd ongeveer 16 werkdagen

Samenvatting

Modeling is now one of the most efficient methodologies in life sciences. From practice to theory, this book develops this approach illustrated by many examples; general concepts and the current state of the art are also presented and discussed.
An historical and general introduction informs the reader how mathematics and formal tools are used to solve biological problems at all levels of the organization of life. The core of this book explains how this is done, based on practical examples coming, for the most part, from the author s personal experience. In most cases, data are included so that the reader can follow the reasoning process and even reproduce calculus. The final chapter is devoted to essential concepts and current developments. The main mathematical tools are presented in an appendix to the book and are written in an adapted language readable by scientists, professionals or students, with a basic knowledge of mathematics.

Specificaties

ISBN13:9781848214231
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:640
Serie:ISTE

Inhoudsopgave

<p>Preface&nbsp;xi</p>
<p>Introduction&nbsp;xv</p>
<p>Chapter 1. Methodology of Modeling in Biology and Ecology 1</p>
<p>1.1. Models and modeling&nbsp;1</p>
<p>1.1.1. Models&nbsp;2</p>
<p>1.1.2. Modeling&nbsp;4</p>
<p>1.2. Mathematical modeling&nbsp;6</p>
<p>1.2.1. Analysis of the biological situation and problem&nbsp;7</p>
<p>1.2.2. Characterization and analysis of the system&nbsp;11</p>
<p>1.2.3. Choice or construction of a model&nbsp;14</p>
<p>1.2.4. Study of the properties of the model&nbsp;18</p>
<p>1.2.5. Identification&nbsp;25</p>
<p>1.2.6. Validation&nbsp;26</p>
<p>1.2.7. Use&nbsp;31</p>
<p>1.2.8. Conclusion&nbsp;32</p>
<p>1.3. Supplements&nbsp;33</p>
<p>1.3.1. Differences between a mathematical object and a mathematical model&nbsp;33</p>
<p>1.3.2. Different types of objects and formalizations used in mathematical modeling&nbsp;34</p>
<p>1.3.3. Elements for choosing a mathematical formalism&nbsp;36</p>
<p>1.3.4. Stochastic and deterministic approaches&nbsp;37</p>
<p>1.3.5. Discrete and continuous time&nbsp;39</p>
<p>1.3.6. Biological and physical variables&nbsp;39</p>
<p>1.3.7. The quantitative qualitative debate&nbsp;40</p>
<p>1.4. Models and modeling in life sciences&nbsp;41</p>
<p>1.4.1. Historical overview&nbsp;42</p>
<p>1.4.2. Modeling in biological disciplines&nbsp;46</p>
<p>1.4.3. Modeling in population biology and ecology&nbsp;47</p>
<p>1.4.4. Actors&nbsp;48</p>
<p>1.4.5. Modeling and informatics&nbsp;49</p>
<p>1.4.6. Definition of bioinformatics&nbsp;49</p>
<p>1.5. A brief history of ecology and the importance of models in this discipline&nbsp;51</p>
<p>1.6. Systems: a unifying concept&nbsp;56</p>
<p>Chapter 2. Functional Representations: Construction and Interpretation of Mathematical Models&nbsp;59</p>
<p>2.1. Introduction&nbsp;60</p>
<p>2.2. Box and arrow diagrams: compartmental models&nbsp;62</p>
<p>2.3. Representations based on Forrester diagrams&nbsp;65</p>
<p>2.4. Chemical–type representation and multilinear differential models&nbsp;66</p>
<p>2.4.1. General overview of the translation algorithm&nbsp;67</p>
<p>2.4.2. Example of the logistic model&nbsp;71</p>
<p>2.4.3. Saturation phenomena&nbsp;73</p>
<p>2.5. Functional representations of models in population dynamics&nbsp;76</p>
<p>2.5.1. Single population model&nbsp;76</p>
<p>2.5.2. Models with two interacting populations&nbsp;79</p>
<p>2.6. General points on functional representations and the interpretation of differential models&nbsp;84</p>
<p>2.6.1. General hypotheses&nbsp;84</p>
<p>2.6.2. Interpretation: phenomenological and mechanistic aspects, superficial knowledge and deep knowledge&nbsp;85</p>
<p>2.6.3. Towards a classification of differential and integro–differential models of population dynamics&nbsp; 86</p>
<p>2.7. Conclusion&nbsp;87</p>
<p>Chapter 3. Growth Models Population Dynamics and Genetics&nbsp;89</p>
<p>3.1. The biological processes of growth&nbsp;90</p>
<p>3.2. Experimental data&nbsp;93</p>
<p>3.2.1. Organism growth data&nbsp;93</p>
<p>3.2.2. Data relating to population growth&nbsp;96</p>
<p>3.3. Models&nbsp;98</p>
<p>3.3.1. Questions and uses of models&nbsp;99</p>
<p>3.3.2. Some examples of classic growth models&nbsp;100</p>
<p>3.4. Growth modeling and functional representations&nbsp;104</p>
<p>3.4.1. Quantitative aspects&nbsp;106</p>
<p>3.4.2. Qualitative aspects: choice and construction of models&nbsp;107</p>
<p>3.4.3. Functional representations and growth models&nbsp;107</p>
<p>3.4.4. Examples of the construction of new models&nbsp;110</p>
<p>3.4.5. Typology of growth models&nbsp;115</p>
<p>3.5. Growth of organisms: some examples&nbsp;117</p>
<p>3.5.1. Individual growth of the European herring gull, Larus argentatus&nbsp;117</p>
<p>3.5.2. Individual growth of young muskrats, Ondatra zibethica&nbsp;118</p>
<p>3.5.3. Growth of a tree in a forest: examples of the application of individual growth models&nbsp;124</p>
<p>3.5.4. Human growth&nbsp;132</p>
<p>3.6. Models of population dynamics&nbsp;133</p>
<p>3.6.1. Examples of growth models for bacterial populations: the exponential model, the logistic model, the Monod model and the Contois model&nbsp;133</p>
<p>3.6.2. Dynamics of biodiversity at a geological level&nbsp;146</p>
<p>3.7. Discrete time elementary demographic models&nbsp;153</p>
<p>3.7.1. A discrete time demographic model of microbial populations&nbsp;153</p>
<p>3.7.2. The Fibonacci model&nbsp;155</p>
<p>3.7.3. Lindenmayer systems as demographic models&nbsp;157</p>
<p>3.7.4. Examples of branching processes&nbsp;164</p>
<p>3.7.5. Evolution of the Grand Paradis ibex population&nbsp;170</p>
<p>3.7.6. Conclusion&nbsp;172</p>
<p>3.8. Continuous time model of the age structure of a population&nbsp;173</p>
<p>3.9. Spatialized dynamics: example of fishing populations and the regulation of sea–fishing&nbsp;174</p>
<p>3.10. Evolution of the structure of an autogamous diploid population&nbsp;175</p>
<p>3.10.1. The Mendelian system&nbsp;176</p>
<p>3.10.2. Genetic evolution of an autogamous population&nbsp;177</p>
<p>Chapter 4. Models of the Interaction Between Populations&nbsp;183</p>
<p>4.1. The Volterra–Kostitzin model: an example of use in molecular biology. Dynamics of RNA populations&nbsp;184</p>
<p>4.1.1. Experimental data&nbsp;185</p>
<p>4.1.2. Elements of qualitative analysis using the Kostitzin model 187</p>
<p>4.1.3. Initial data&nbsp;190</p>
<p>4.1.4. Estimation of parameters and analysis of results&nbsp;190</p>
<p>4.2. Models of competition between populations&nbsp;193</p>
<p>4.2.1. The differential system&nbsp;194</p>
<p>4.2.2. Description of competition using functional representations&nbsp;198</p>
<p>4.2.3. Application to the study of competition between Fusarium populations in soil&nbsp;203</p>
<p>4.2.4. Theoretical study of competition in an open system&nbsp;207</p>
<p>4.2.5. Competition in a variable environment&nbsp;210</p>
<p>4.3. Predator prey systems&nbsp;217</p>
<p>4.3.1. The basic model (model I)&nbsp;218</p>
<p>4.3.2. Model in a limited environment (model II)&nbsp;222</p>
<p>4.3.3. Model with limited capacities of assimilation of prey by the predator (model III)&nbsp;227</p>
<p>4.3.4. Model with variable limited capacities for assimilation of prey by the predator&nbsp;233</p>
<p>4.3.5. Model with limited capacities for assimilation of prey by the predator and spatial heterogeneity&nbsp; 234</p>
<p>4.3.6. Population dynamics of Rhizobium japonicum in soil&nbsp;237</p>
<p>4.3.7. Predation of Rhizobium japonicum by amoeba in soil&nbsp;239</p>
<p>4.4. Modeling the process of nitrification by microbial populations in soil: an example of succession&nbsp; 241</p>
<p>4.4.1. Introduction&nbsp;241</p>
<p>4.4.2. Experimental procedure&nbsp;243</p>
<p>4.4.3. Construction of the model identification&nbsp;244</p>
<p>4.4.4. Results&nbsp;248</p>
<p>4.4.5. Discussion and conclusion&nbsp;249</p>
<p>4.5. Conclusion and other details&nbsp;251</p>
<p>Chapter 5. Compartmental Models 253</p>
<p>5.1. Diagrammatic representations and associated mathematical models&nbsp;256</p>
<p>5.1.1. Diagrammatic representations&nbsp;256</p>
<p>5.1.2. Mathematical models&nbsp;257</p>
<p>5.2. General autonomous compartmental models&nbsp;265</p>
<p>5.2.1. Catenary systems&nbsp;266</p>
<p>5.2.2. Looped systems&nbsp;267</p>
<p>5.2.3. Mammillary systems&nbsp;268</p>
<p>5.2.4. Systems representing spatial processes&nbsp;268</p>
<p>5.2.5. General representation of an autonomous compartmental system&nbsp;269</p>
<p>5.3. Estimation of model parameters&nbsp;272</p>
<p>5.3.1. Least squares method (elementary principles)&nbsp;272</p>
<p>5.3.2. Study of sensitivity functions optimization of the experimental procedure&nbsp;274</p>
<p>5.4. Open systems&nbsp;274</p>
<p>5.4.1. The single compartment&nbsp;274</p>
<p>5.4.2. The single compartment with input and output&nbsp;275</p>
<p>5.5. General open compartmental models&nbsp;278</p>
<p>5.6. Controllabillity, observability and identifiability of a compartmental system&nbsp;280</p>
<p>5.6.1. Controllabillity, observability and identifiability&nbsp;280</p>
<p>5.6.2. Applications of these notions&nbsp;281</p>
<p>5.7. Other mathematical models&nbsp;282</p>
<p>5.8. Examples and additional information&nbsp;283</p>
<p>5.8.1. Model of a single compartment system: application to the definition of optimal posology&nbsp;283</p>
<p>5.8.2. Reversible two–compartment system&nbsp;287</p>
<p>5.8.3. Estimation of tracer waiting time in cellular structures&nbsp;293</p>
<p>5.8.4. Example of construction of the diffusion equation&nbsp;300</p>
<p>Chapter 6. Complexity, Scales, Chaos, Chance and Other Oddities&nbsp;305</p>
<p>6.1. Complexity&nbsp;307</p>
<p>6.1.1. Some aspects of word use for complex and complexity&nbsp;308</p>
<p>6.1.2. Biodiversity and complexity towards a unifying theory of biodiversity?&nbsp;325</p>
<p>6.1.3. Random, logical, structural and dynamic complexity&nbsp;328</p>
<p>6.2. Nonlinearities, temporal and spatial scales, the concept of equilibrium and its avatars&nbsp;331</p>
<p>6.2.1. Time and spatial scales&nbsp;335</p>
<p>6.2.2. About the concept of equilibrium&nbsp;337</p>
<p>6.2.3. Transitions between attractors: are the bifurcations predictable?&nbsp;342</p>
<p>6.3. The modeling of complexity&nbsp;344</p>
<p>6.3.1. Complex dynamics: the example of deterministic chaos&nbsp;344</p>
<p>6.3.2. Dynamics of complex systems and their structure&nbsp;352</p>
<p>6.3.3. Shapes and morphogenesis spatial structure dynamics: Lindenmayer systems, fractals and cellular automata&nbsp;358</p>
<p>6.3.4. Random behavior&nbsp;369</p>
<p>6.4. Conclusion&nbsp;371</p>
<p>6.4.1. Chance and complexity&nbsp;371</p>
<p>6.4.2. The modeling approach&nbsp;375</p>
<p>6.4.3. Problems linked to predictions&nbsp;378</p>
<p>APPENDICES&nbsp;383</p>
<p>Appendix 1. Differential Equations&nbsp;385</p>
<p>Appendix 2. Recurrence Equations&nbsp;465</p>
<p>Appendix 3. Fitting a Model to Experimental Results&nbsp;489</p>
<p>Appendix 4. Introduction to Stochastic Processes&nbsp;561</p>
<p>Bibliography&nbsp;597</p>
<p>Index&nbsp;617</p>

Rubrieken

    Personen

      Trefwoorden

        Modeling Living Systems: From Cell to Ecosystem