Optics in Instruments – Applications in Biology and Medicine

Applications in Biology and Medicine

Specificaties
Gebonden, 256 blz. | Engels
John Wiley & Sons | e druk, 2013
ISBN13: 9781848212442
Rubricering
John Wiley & Sons e druk, 2013 9781848212442
Onderdeel van serie ISTE
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Optics is a science which covers a very large domain and is experiencing indisputable growth. It has enabled the development of a considerable number of instruments, the optical component or methodology of which is often the essential part of portent systems. This book sets out show how optical physical phenomena such as lasers the basis of instruments of measurement are involved in the fields of biology and medicine.
Optics in Instruments: Applications in Biology and Medicine details instruments and measurement systems using optical methods in the visible and near–infrared, as well as their applications in biology and medicine, through looking at confocal laser scanning microscopy, the basis of instruments performing in biological and medical analysis today, and flow cytometry, an instrument which measures at high speed the parameters of a cell passing in front of one or more laser beams. The authors also discuss optical coherence tomography (OCT), which is an optical imaging technique using non–contact infrared light, the therapeutic applications of lasers, where they are used for analysis and care, and the major contributions of plasmon propagation in the field of life sciences through instrumental developments, focusing on propagating surface plasmons (PSP) and localized plasmons (LP).

Contents:

1. Confocal Laser Scanning Microscopy, Thomas Olivier and Baptiste Moine.
2. Flow Cytometry (FCM) Measurement of Cells in Suspension, Odile Sabido.
3. Optical Coherence Tomography, Claude Boccara and Arnaud Dubois.
4. Therapeutic Applications of Lasers, Geneviève Bourg–Heckly and Serge Mordon.
5. Plasmonics, Emmanuel Fort.

About the Authors

Jean–Pierre Goure is Emeritus Professor of optics at Jean Monnet University in Saint–Etienne, France, and was previously director of the UMR 5516 laboratory linked with CNRS. He is the author of more than 100 publications in various fields, such as spectroscopy, instrumentation, sensors, optical fiber and optical communications. He was also previously deputy director in engineering science at CNRS and a member of several scientific associations such as the French Optical Society and the European Optical Society.

Specificaties

ISBN13:9781848212442
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:256
Serie:ISTE

Inhoudsopgave

<p>Preface&nbsp;ix</p>
<p>Introduction&nbsp;xiii</p>
<p>Chapter 1 Confocal Laser Scanning Microscopy&nbsp;1<br /> Thomas OLIVIER and Baptiste MOINE</p>
<p>1.1 Introduction&nbsp;1</p>
<p>1.1.1 Context and framework of chapter&nbsp;1</p>
<p>1.1.2 From wide–field microscopy to confocal microscopy 3</p>
<p>1.2 Principle and implementation 6</p>
<p>1.2.1 General principle&nbsp;7</p>
<p>1.2.2 Axial and lateral resolution in confocal microscopy 9</p>
<p>1.2.3 Some notions of fluorescence&nbsp;21</p>
<p>1.2.4 Main elements of a confocal scanning laser microscope 25</p>
<p>1.3 Applications in biology, potential and limitations 40</p>
<p>1.3.1 Basic elements of biology for the neophyte 41</p>
<p>1.3.2 Fluorescent labeling&nbsp;43</p>
<p>1.3.3 Practical implementation of confocal microscopy 46</p>
<p>1.4 Related and derived techniques&nbsp;62</p>
<p>1.4.1 Advanced contrast modes: FRAP, FLIP, FLIM, FRET, etc 62</p>
<p>1.4.2 The contribution of nonlinear contrast modes 66</p>
<p>1.4.3 Recent major advances: overcoming the diffraction limit&nbsp;72</p>
<p>1.5 Bibliography&nbsp;74</p>
<p>Chapter 2 Flow Cytometry (FCM) Measurement of Cells in Suspension&nbsp;79<br /> Odile SABIDO</p>
<p>2.1 History of FCM&nbsp;79</p>
<p>2.2 Components of the cytometer: fluidics, optics and signal processing&nbsp;80</p>
<p>2.2.1 Fluidics&nbsp;81</p>
<p>2.2.2 Optics&nbsp;81</p>
<p>2.2.3 Signal processing&nbsp;83</p>
<p>2.3 Experimentation strategy&nbsp;83</p>
<p>2.3.1 Visualizations of the spectra&nbsp;84</p>
<p>2.3.2 Compensation of fluorescences&nbsp;84</p>
<p>2.3.3 Checking the optical bench 84</p>
<p>2.3.4 Presentation of parameters A/H/W&nbsp;85</p>
<p>2.3.5 Graphical presentation&nbsp;85</p>
<p>2.4 Types of platform for FCM&nbsp;87</p>
<p>2.4.1 Clinical platform 87</p>
<p>2.4.2 Research platform&nbsp;87</p>
<p>2.5 Principle of cell sorting&nbsp;88</p>
<p>2.6 Analyzed parameters&nbsp;90</p>
<p>2.6. 1Light scattering&nbsp;90</p>
<p>2.6.2 Fluorochromes&nbsp;90</p>
<p>2.7&nbsp; Applications in biology&nbsp;93</p>
<p>2.7.1 Clinical&nbsp;93</p>
<p>2.7.2 Research&nbsp;93</p>
<p>2.7.3 Environment&nbsp;94</p>
<p>2.7.4 Plant biology&nbsp;94</p>
<p>2.7.5 Industrial microbiology&nbsp;94</p>
<p>2.8 Complementarities of the FCM with the other cytometries, confocal and dynamic&nbsp;95</p>
<p>2.9 Cytometry on beads, LUMINEXTM type&nbsp;95</p>
<p>2.10 Scientific societies&nbsp;96</p>
<p>2.11 Websites to visit&nbsp;96</p>
<p>2.12 Bibliography&nbsp;97</p>
<p>2.13 Reference books&nbsp;99</p>
<p>Chapter 3 Optical Coherence Tomography 101<br /> Claude BOCCARA and Arnaud DUBOIS</p>
<p>3.1 Introduction&nbsp;101</p>
<p>3.2 Principles of OCT&nbsp;102</p>
<p>3.3 Frequency–domain OCT 104</p>
<p>3.4 Spatial resolution&nbsp;106</p>
<p>3.5 Applications of OCT&nbsp;107</p>
<p>3.5.1 Ophtalmology&nbsp;107</p>
<p>3.5.2 Internal medicine&nbsp;107</p>
<p>3.5.3 Other fields of application&nbsp;108</p>
<p>3.6 Extensions of OCT&nbsp;109</p>
<p>3.7 Full–field OCT&nbsp;110</p>
<p>3.7.1 Principle&nbsp;110</p>
<p>3.7.2 Spatial resolution&nbsp;111</p>
<p>3.7.3 Dynamics and sensitivity&nbsp;113</p>
<p>3.7.4 Operating speed&nbsp;113</p>
<p>3.7.5 Applications&nbsp;114</p>
<p>3.8 Conclusion&nbsp;119</p>
<p>3.9 Bibliography&nbsp;119</p>
<p>Chapter 4 Therapeutic Applications of Lasers 125<br /> Genevi&egrave;ve BOURG–HECKLY and Serge MORDON</p>
<p>4.1 Introduction&nbsp;125</p>
<p>4.2 Interaction of light with biological tissues 127</p>
<p>4.2.1 Optical parameters characterizing light radiation 127</p>
<p>4.2.2 The three types of interaction between a light beam and a biological tissue&nbsp;131</p>
<p>4.2.3 Penetration of light in biological tissues&nbsp;151</p>
<p>4.3 Therapeutic effects of lasers&nbsp;155</p>
<p>4.3.1 Thermal effect&nbsp;156</p>
<p>4.3.2 Photoablative effect&nbsp;167</p>
<p>4.3.3 Photochemical or photodynamic effect&nbsp;168</p>
<p>4.3.4 The electromechanical effect&nbsp;174</p>
<p>4.4 Conclusion&nbsp;175</p>
<p>4.5 For more information&nbsp;175</p>
<p>4.6 Bibliography&nbsp;176</p>
<p>Chapter 5 Plasmonics 179<br /> Emmanuel FORT</p>
<p>5.1 Propagating surface plasmons&nbsp;180</p>
<p>5.1.1 Theoretical reminders and definitions&nbsp;180</p>
<p>5.1.2 Surface plasmon resonance sensors&nbsp;185</p>
<p>5.1.3 Units and sensitivity of SPR sensors&nbsp;189</p>
<p>5.1.4 Other SPR configurations 190</p>
<p>5.1.5 SPR imaging&nbsp;191</p>
<p>5.1.6 Surface plasmons coupled fluorescence 194</p>
<p>5.2 Localized surface plasmons&nbsp;201</p>
<p>5.2.1 Theoretical reminders&nbsp;201</p>
<p>5.2.2 Detection of plasmonic nanoprobes&nbsp;203</p>
<p>5.3 Conclusion&nbsp;210</p>
<p>5.4 Bibliography&nbsp;211</p>
<p>List of Authors&nbsp;217</p>
<p>Index&nbsp;219</p>

Rubrieken

    Personen

      Trefwoorden

        Optics in Instruments – Applications in Biology and Medicine