,

Screening Constant by Unit Nuclear Charge Method – Description and Application to the Photoionization of Atomic Systems

Description and Application to the Photoionization of Atomic Systems

Specificaties
Gebonden, 416 blz. | Engels
John Wiley & Sons | e druk, 2018
ISBN13: 9781786302731
Rubricering
John Wiley & Sons e druk, 2018 9781786302731
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

The reader will find in this collection a clear exposition of the method of the Screen Constant by Nuclear Charge Unit which can be applied in a simple and immediate way to many fields of Physics in relation to atomic spectroscopy.

Specificaties

ISBN13:9781786302731
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:416

Inhoudsopgave

<p>Foreword xi</p>
<p>Preface xv</p>
<p>Introduction xix</p>
<p>Part 1 1</p>
<p>Chapter 1. Different Photoionization Processes, Rydberg Series 3</p>
<p>1.1. Photoionization processes 3</p>
<p>1.2. Rydberg Series 10</p>
<p>Chapter 2. Experimental and Theoretical Methods of Photoionization 21</p>
<p>2.1. Experimental methods 21</p>
<p>2.2. Theoretical methods 22</p>
<p>2.3. Absolute photoionization cross–section 24</p>
<p>2.4. Analysis of resonance energies and quantum defect 28</p>
<p>Chapter 3. General Formalism of the Screening Constant by Unit Nuclear Charge Method Applied to Photoionization 33</p>
<p>3.1. Genesis of the screening constant by unit nuclear charge method 33</p>
<p>3.2. Expression of the total energy of three–electron atomic systems 43</p>
<p>3.3. General expressions of the resonance energies and widths of Rydberg series of multi–electron atomic systems 48</p>
<p>Part 2. Applications in the Calculations of Energies and Natural Widths of the Resonance States of<br />Multi–Electron Atomic Systems 55</p>
<p>Introduction to Part 2 57</p>
<p>Chapter 4. Application to the Calculation of Energies of Two–electron Atomic Systems (Helium–like Systems)&nbsp;59</p>
<p>4.1. Energy of the ground state of helium–like systems 59</p>
<p>4.2. Energy of the excited states, 1sns 1,3Se, of helium–like systems 61</p>
<p>4.3. Energy of the doubly excited symmetric states, ns2 and np2, of helium–like systems 65</p>
<p>4.4. Calculation of the resonance energies and natural widths of the Rydberg series, 2 (1,0)n1Se, of the helium atom 67</p>
<p>4.5. Effect of the nucleus on the accuracy of semi–empirical calculations 71</p>
<p>4.6. Resonance energy of the Rydberg series, 2 (1,0)n1,3P&deg;and 2 (1,0)n P&deg;, of the Li+ helium–like ion 72</p>
<p>4.7. Resonance energies of the Rydberg series,1,3Se, of the Li+ helium–like ion converging toward the excitation threshold, n = 2&nbsp;78</p>
<p>4.8. Calculation of the energies of the Rydberg states,3 (1,1)n 1P0, of helium–like systems 80</p>
<p>4.9. Physical interpretation of the angular–correlation quantum number, K 82</p>
<p>Chapter 5. Calculating the energies of Three–electron Atomic Systems (Lithium–like Systems) 117</p>
<p>5.1. Energy of the ground state of lithium–like systems 117</p>
<p>5.2. Energy of the doubly excited states, ls2snl 2L, of lithium–like systems 119</p>
<p>5.3. Energy of the doubly excited states, ls2sns 2S, of lithium–like systems 123</p>
<p>5.4. Energy of the single excitation states, 1s2nl 2L &Atilde; n(1 nl n3), of lithium–like systems 132</p>
<p>Chapter 6. Application in the Resonant Photoionization of Atomic Systems of Atomic Numbers Z = 4 12&nbsp;149</p>
<p>6.1. Resonance energies of the Rydberg series, (2pns 1P&deg;) and (2pnd 1P&deg;), of beryllium 149</p>
<p>6.2. Resonance energies of the excited states, 1s2p4 2,4L, of five–electron atomic systems (boron–like systems) 153</p>
<p>6.3. Energies and widths of the Rydberg series, 2pns 1,3P&deg;and 2pnd 1.3P&deg;, of the beryllium–like B+ ion 164</p>
<p>6.4. Energies and widths of the Rydberg series, 2pnl 1,3P&deg;, of beryllium–like ions C2+, N3+. .. and Ar14+&nbsp; 181</p>
<p>6.5. Resonance energies of the Rydberg series, 2s22p4 (1D2)ns, nd, 2s22p4 (1S0)ns, nd and 2s2p5 (3P2)np, of the Ne+ ion 206</p>
<p>6.6. Energies of the Rydberg series, 2s22p2 (1D)nd (2L), 2s22p2 (1S)nd (2L), 2s2p3(5S0)np (4P) and 2s22p3 (3D)np, of the F2+ ion&nbsp;222</p>
<p>6.7. Energies and widths of the Rydberg series, 3pns 1.3P, 3pnd 1.3P and 3pnd 3D, of magnesium (Mg) 230</p>
<p>6.8. Energies and widths of several resonance states resulting from the photoexcitation 1s 2p of the N3+ and N4+ ions 245</p>
<p>Chapter 7. Resonant Photoionization of Sulfur (S) and Ar+, Se+, Se2+ and Kr+ Ions 255</p>
<p>7.1. Photoionization of sulfur 255</p>
<p>7.2. Photoionization of the krypton ion (Kr+) 264</p>
<p>7.3. Photoionization of the Argon ion (Ar+) 270</p>
<p>7.4. Resonant photoionization of the selenium ions, Se+, Se2+ and Se3+&nbsp; 283</p>
<p>Conclusion 319</p>
<p>Appendices 325</p>
<p>Appendix 1. Detailed Calculation of the Screening Constant by Unit Nuclear Charge Relative to the Ground State of Two–electron Atomic Systems 327</p>
<p>Appendix 2. Formalism of Slater s Atomic Orbital Theory 335</p>
<p>Appendix 3. Modified Formalism of the Atomic Orbital Theory 341</p>
<p>Bibliography 353</p>
<p>Index 371</p>

Rubrieken

    Personen

      Trefwoorden

        Screening Constant by Unit Nuclear Charge Method – Description and Application to the Photoionization of Atomic Systems