,

Advanced Techniques and Technology of Computer–Aided Feedback Control

Specificaties
Gebonden, 256 blz. | Engels
John Wiley & Sons | e druk, 2018
ISBN13: 9781786302496
Rubricering
John Wiley & Sons e druk, 2018 9781786302496
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This book covers various modern theoretical, technical, practical and technological aspects of computerized numerical control and control systems of deterministic and stochastic dynamical processes.

Specificaties

ISBN13:9781786302496
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:256

Inhoudsopgave

Preface xi
<br />
<br />Introduction xv
<br />
<br />
Part 1. Advanced Elements and Test Bench of Computer–aided Feedback Control 1
<br />
<br />
Chapter 1. Canonical Discrete State Models of Dynamic Processes 3
<br />
<br />1.1. Interest and construction of canonical state models 3
<br />
<br />1.2. Canonical realizations of a transfer function G(z) 4
<br />
<br />1.2.1. Jordan canonical realization 4
<br />
<br />1.2.2. Controllable canonical realization 7
<br />
<br />1.2.3. Observable canonical realization 9
<br />
<br />1.3. Canonical transformations of discrete state models 11
<br />
<br />1.3.1. Jordan canonical transformation 12
<br />
<br />1.3.2. Controllable canonical transformation 13
<br />
<br />1.3.3. Observable canonical transformation 16
<br />
<br />1.3.4. Kalman canonical transformation 19
<br />
<br />1.4. Canonical decomposition diagram 19
<br />
<br />1.5. Discretization and canonical transformations using Matlab 20
<br />
<br />1.6. Exercises and solutions 21
<br />
<br />
Chapter 2. Design and Simulation of Digital State Feedback Control Systems 27
<br />
<br />2.1. Principle of digital state feedback control 27
<br />
<br />2.2. Calculation of the gain K using pole placement 28
<br />
<br />2.3. State feedback with complete order observer 29
<br />
<br />2.3.1. Problem statement 29
<br />
<br />2.3.2. Structure of the complete or full state observer 29
<br />
<br />2.3.3. Synthesis diagram of the state feedback with complete observer 31
<br />
<br />2.4. Discrete state feedback with partial observer 34
<br />
<br />2.4.1. Problem statement 34
<br />
<br />2.4.2. Structure of the partial state observer 34
<br />
<br />2.4.3. Diagram of discrete state feedback with partial observer 37
<br />
<br />2.5. Discrete state feedback with set point tracking 40
<br />
<br />2.6. Block diagram of a digital control system 40
<br />
<br />2.7. Computer–aided simulation of a servomechanism 41
<br />
<br />2.7.1. Simulation of a speed servomechanism 41
<br />
<br />2.7.2. Computer–aided simulation of a position servomechanism 46
<br />
<br />2.8. Exercises and solutions 49
<br />
<br />
Chapter 3. Multimedia Test Bench for Computer–aided Feedback Control 61
<br />
<br />3.1. Context and interest 61
<br />
<br />3.1.1. Context 61
<br />
<br />3.1.2. Scientific/teaching interest 62
<br />
<br />3.1.3. Platform presentation methodology 62
<br />
<br />3.2. Hardware constituents of the platform 62
<br />
<br />3.3. Design elements of the ServoSys software application 63
<br />
<br />3.3.1. Fundamental elements 63
<br />
<br />3.3.2. Elements of software programming 68
<br />
<br />3.4. Design of the ServoSys software application 74
<br />
<br />3.4.1. Architectural diagram of the software application 74
<br />
<br />3.4.2. SFC of the ServoSys multimedia platform 75
<br />
<br />3.5. Implementation of the ServoSys multimedia platform 80
<br />
<br />3.5.1. Hardware implementation 80
<br />
<br />3.5.2. Software implementation 81
<br />
<br />3.6. Overall tests of the platform 84
<br />
<br />3.6.1. Commissioning and procedures 84
<br />
<br />3.6.2. Samples of results displayed on the Matlab/GUI panel 85
<br />
<br />3.7. Exercises and solutions 90
<br />
<br />
Part 2. Deterministic and Stochastic Optimal Digital Feedback Control 97
<br />
<br />
Chapter 4. Deterministic Optimal Digital Feedback Control 99
<br />
<br />4.1. Optimal control: context and historical background 99
<br />
<br />4.1.1. Context 99
<br />
<br />4.1.2. Historical background 99
<br />
<br />4.2. General problem of discrete–time optimal control 102
<br />
<br />4.2.1. Principle 102
<br />
<br />4.2.2. Functional formulation 102
<br />
<br />4.3. Linear quadratic regulator (LQR) 103
<br />
<br />4.3.1. Definition, formulation and study methods 103
<br />
<br />4.3.2. H J B equations 104
<br />
<br />4.4. Translation in discrete time of continuous LQR problem 108
<br />
<br />4.4.1. Discretization of state equation 109
<br />
<br />4.4.2. Discretization of the cost function 109
<br />
<br />4.4.3. Case study of a scalar LQR problem 110
<br />
<br />4.5. Predictive optimal control 114
<br />
<br />4.5.1. Basic principle 114
<br />
<br />4.5.2. Recurrence equation of a process based on q 1 operator 116
<br />
<br />4.5.3. General formulation of a prediction model 116
<br />
<br />4.5.4. Solution and structure of predictive optimal control 118
<br />
<br />4.6. Exercises and solutions 119
<br />
<br />
Chapter 5. Stochastic Optimal Digital Feedback Control 127
<br />
<br />5.1. Introduction to stochastic dynamic processes 127
<br />
<br />5.2. Stochastic LQR 128
<br />
<br />5.2.1. Formulation 128
<br />
<br />5.2.2. Resolution of the stochastic H J B equation 129
<br />
<br />5.2.3. Block diagram of stochastic LQR 133
<br />
<br />5.2.4. Properties of stochastic LQR 134
<br />
<br />5.3. Discrete Kalman filter 136
<br />
<br />5.3.1. Scientific context and hypotheses 136
<br />
<br />5.3.2. Notations 136
<br />
<br />5.3.3. Closed–loop algorithmic diagram 137
<br />
<br />5.4. Linear Quadratic Gaussian regulator 139
<br />
<br />5.4.1. Context 139
<br />
<br />5.4.2. Separation principle 140
<br />
<br />5.4.3. Algorithmic diagram of LQG regulator 141
<br />
<br />5.5. Exercises and solutions 142
<br />
<br />
Chapter 6. Deployed Matlab/GUI Platform for the Design and Virtual Simulation of Stochastic Optimal Control&nbsp;
Systems 145
<br />
<br />6.1. Introduction to OPCODE (Optimal Control Design) platform 145
<br />
<br />6.1.1. Scientific context 145
<br />
<br />6.1.2. Detailed presentation methodology 145
<br />
<br />6.2. Fundamental OPCODE design elements 146
<br />
<br />6.2.1. Elements of deterministic optimal control 146
<br />
<br />6.2.2. Elements of stochastic optimal control 149
<br />
<br />6.3. Design of OPCODE using SFC 152
<br />
<br />6.3.1. Architectural diagram152
<br />
<br />6.3.2. Implementation of SFC&nbsp; 155
<br />
<br />6.4. Software implementation 157
<br />
<br />6.5. Examples of OPCODE use 159
<br />
<br />6.5.1. Design of deterministic optimal control systems 159
<br />
<br />6.5.2. Design of stochastic optimal control systems 159
<br />
<br />6.6. Production of deployed OPCODE.EXE application 161
<br />
<br />6.6.1. Interest of Matlab/GUI application deployment 161
<br />
<br />6.6.2. Deployment methodology 162
<br />
<br />6.6.3. Tests of deployed OPCODE.EXE application 162
<br />
<br />6.7. Exercises and solutions 164
<br />
<br />
Part 3. Remotely Operated Feedback Control Systems via the Internet 169
<br />
<br />
Chapter 7. Elements of Remotely Operate Feedback Control Systems via the Internet 171
<br />
<br />7.1. Problem statement 171
<br />
<br />7.2. Infrastructural topologies 172
<br />
<br />7.2.1. Basic topology 172
<br />
<br />7.2.2. Advanced topologies 173
<br />
<br />7.3. Remotely operated laboratories via the Internet 176
<br />
<br />7.3.1. Comparison between classical and remotely operated laboratories 176
<br />
<br />7.3.2. Infrastructures on the server side of a remotely operated laboratory 178
<br />
<br />7.3.3. Criteria for the creation of a remotely operated laboratory180
<br />
<br />7.4. Exercises and solutions 180
<br />
<br />
Chapter 8. Remotely Operated Automation Laboratory via the Internet 187
<br />
<br />8.1. Introduction to remotely operated automation laboratory 187
<br />
<br />8.1.1. Creation context 187
<br />
<br />8.1.2. Didactic context 188
<br />
<br />8.1.3. Specifications 188
<br />
<br />8.2. Design and implementation of the experimental system 189
<br />
<br />8.2.1. Descriptive diagrams 189
<br />
<br />8.2.2. Dynamic model of the real power lighting system 191
<br />
<br />8.2.3. Dynamic model of the PID controller for power lighting 191
<br />
<br />8.2.4. MMMI–aided Labview application 192
<br />
<br />8.3. Topology of the remotely operated automation laboratory 193
<br />
<br />8.3.1. Hardware infrastructure 194
<br />
<br />8.3.2. Specialized infrastructure on the server side 194
<br />
<br />8.3.3. Infrastructure on the remote operator side 196
<br />
<br />8.4. Use of a remotely operated laboratory via the Internet 196
<br />
<br />8.4.1. Procedure instruction sheet 196
<br />
<br />8.4.2. Samples of test results obtained with REOPAULAB 197
<br />
<br />8.5. Exercises and solutions 200
<br />
<br />Appendices 207
<br />
<br />Appendix 1. Table of z–transforms 209
<br />
<br />Appendix 2. Matlab Elements Used in this Book 211
<br />
<br />Appendix 3. Discretization of Transfer Functions 215
<br />
<br />Bibliography 217
<br />
<br />Index 219

Rubrieken

    Personen

      Trefwoorden

        Advanced Techniques and Technology of Computer–Aided Feedback Control