, ,

Advanced Numerical Methods with Matlab – Function Approximation and System Resolution

Function Approximation and System Resolution

Specificaties
Gebonden, 240 blz. | Engels
John Wiley & Sons | e druk, 2018
ISBN13: 9781786302359
Rubricering
John Wiley & Sons e druk, 2018 9781786302359
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Most physical problems can be written in the form of mathematical equations (differential, integral, etc.). Mathematicians have always sought to find analytical solutions to the equations encountered in the different sciences of the engineer (mechanics, physics, biology, etc.). These equations are sometimes complicated and much effort is required to simplify them. In the middle of the 20th century, the arrival of the first computers gave birth to new methods of resolution that will be described by numerical methods. They allow solving numerically as precisely as possible the equations encountered (resulting from the modeling of course) and to approach the solution of the problems posed. The approximate solution is usually computed on a computer by means of a suitable algorithm.

The objective of this book is to introduce and study the basic numerical methods and those advanced to be able to do scientific computation. The latter refers to the implementation of approaches adapted to the treatment of a scientific problem arising from physics (meteorology, pollution, etc.) or engineering (structural mechanics, fluid mechanics, signal processing, etc.) .

Specificaties

ISBN13:9781786302359
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:240

Inhoudsopgave

<p>Preface xi</p>
<p>Part 1. Introduction 1</p>
<p>Chapter 1. Review of Linear Algebra &nbsp;3</p>
<p>1.1. Vector spaces 3</p>
<p>1.1.1. General definitions &nbsp;3</p>
<p>1.1.2. Free families, generating families and bases &nbsp;4</p>
<p>1.2. Linear mappings 5</p>
<p>1.3. Matrices &nbsp;7</p>
<p>1.3.1. Operations on matrices 7</p>
<p>1.3.2. Change–of–basis matrices 8</p>
<p>1.3.3. Matrix notations 9</p>
<p>1.4. Determinants 10</p>
<p>1.5. Scalar product 12</p>
<p>1.6. Vector norm 12</p>
<p>1.7. Matrix eigenvectors and eigenvalues &nbsp;&nbsp;13</p>
<p>1.7.1. Definitions and properties 13</p>
<p>1.7.2. Matrix diagonalization 15</p>
<p>1.7.3. Triangularization of matrices &nbsp;15</p>
<p>1.8. Using Matlab 16</p>
<p>Chapter 2. Numerical Precision 21</p>
<p>2.1. Introduction 21</p>
<p>2.2. Machine representations of numbers &nbsp;&nbsp;22</p>
<p>2.3. Integers 23</p>
<p>2.3.1. External representation 23</p>
<p>2.3.2. Internal representation of positive integers 24</p>
<p>2.4. Real numbers 25</p>
<p>2.4.1. External representation 25</p>
<p>2.4.2. Internal encoding of real numbers 25</p>
<p>2.5. Representation errors 26</p>
<p>2.5.1. Properties of computer–based arithmetic 27</p>
<p>2.5.2. Operation of subtraction 28</p>
<p>2.5.3. Stability &nbsp;29</p>
<p>2.6. Determining the best algorithm &nbsp;29</p>
<p>2.7. Using Matlab 30</p>
<p>2.7.1. Definition of variables &nbsp;30</p>
<p>2.7.2. Manipulating numbers 30</p>
<p>Part 2. Approximating Functions 35</p>
<p>Chapter 3. Polynomial Interpolation &nbsp;37</p>
<p>3.1. Introduction 37</p>
<p>3.2. Interpolation problems &nbsp;37</p>
<p>3.2.1. Linear interpolation &nbsp;38</p>
<p>3.3. Polynomial interpolation techniques &nbsp;&nbsp;38</p>
<p>3.4. Interpolation with the Lagrange basis 39</p>
<p>3.4.1. Polynomial interpolation error &nbsp;43</p>
<p>3.4.2. Neville Aitken method 46</p>
<p>3.5. Interpolation with the Newton basis &nbsp;&nbsp;46</p>
<p>3.6. Interpolation using spline functions &nbsp;&nbsp;48</p>
<p>3.6.1. Hermite interpolation &nbsp;50</p>
<p>3.6.2. Spline interpolation error 55</p>
<p>3.7. Using Matlab 58</p>
<p>3.7.1. Operations on polynomials 58</p>
<p>3.7.2. Manipulating polynomials 59</p>
<p>3.7.3. Evaluation of polynomials 60</p>
<p>3.7.4. Linear and nonlinear interpolation 60</p>
<p>3.7.5. Lagrange function 63</p>
<p>3.7.6. Newton function 64</p>
<p>Chapter 4. Numerical Differentiation &nbsp;67</p>
<p>4.1. First–order numerical derivatives and the truncation error &nbsp;67</p>
<p>4.2. Higher–order numerical derivatives &nbsp;&nbsp;70</p>
<p>4.3. Numerical derivatives and interpolation &nbsp;71</p>
<p>4.4. Studying the differentiation error &nbsp;73</p>
<p>4.5. Richardson extrapolation &nbsp;77</p>
<p>4.6. Application to the heat equation &nbsp;78</p>
<p>4.7. Using Matlab 81</p>
<p>Chapter 5. Numerical Integration 83</p>
<p>5.1. Introduction 83</p>
<p>5.2. Rectangle method 84</p>
<p>5.3. Trapezoidal rule 84</p>
<p>5.4. Simpson s rule 87</p>
<p>5.5. Hermite s rule 90</p>
<p>5.6. Newton C&ocirc;tes rules 91</p>
<p>5.7. Gauss Legendre method &nbsp;92</p>
<p>5.7.1. Problem statement 92</p>
<p>5.7.2. Legendre polynomials &nbsp;94</p>
<p>5.7.3. Choosing the i and xi (i = 0, &nbsp;, n) 99</p>
<p>5.8. Using Matlab 100</p>
<p>5.8.1. Matlab functions for numerical integration 100</p>
<p>5.8.2. Trapezoidal rule 101</p>
<p>5.8.3. Simpson s rule 103</p>
<p>Part 3. Solving Linear Systems 107</p>
<p>Chapter 6. Matrix Norm and Conditioning &nbsp;109</p>
<p>6.1. Introduction 109</p>
<p>6.2. Matrix norm 109</p>
<p>6.3. Condition number of a matrix 113</p>
<p>6.3.1. Approximation of K(A) 116</p>
<p>6.4. Preconditioning 116</p>
<p>6.5. Using Matlab 117</p>
<p>6.5.1. Matrices and vectors &nbsp;117</p>
<p>6.5.2. Condition number of a matrix &nbsp;119</p>
<p>Chapter 7. Direct Methods &nbsp;123</p>
<p>7.1. Introduction 123</p>
<p>7.2. Method of determinants or Cramer s method 123</p>
<p>7.2.1. Matrix inversion by Cramer s method &nbsp;124</p>
<p>7.3. Systems with upper triangular matrices &nbsp;124</p>
<p>7.4. Gaussian method 125</p>
<p>7.4.1. Solving multiple systems in parallel &nbsp;129</p>
<p>7.5. Gauss Jordan method &nbsp;129</p>
<p>7.5.1. Underlying principle &nbsp;129</p>
<p>7.5.2. Computing the inverse of a matrix with the Gauss Jordan algorithm &nbsp;131</p>
<p>7.6. LU decomposition 132</p>
<p>7.7. Thomas algorithm 133</p>
<p>7.8. Cholesky decomposition &nbsp;134</p>
<p>7.9. Using Matlab 136</p>
<p>7.9.1. Matrix operations 136</p>
<p>7.9.2. Systems of linear equations 138</p>
<p>Chapter 8. Iterative Methods &nbsp;147</p>
<p>8.1. Introduction 147</p>
<p>8.2. Classical iterative techniques 148</p>
<p>8.2.1. Jacobi method 149</p>
<p>8.2.2. Gauss Seidel method &nbsp;151</p>
<p>8.2.3. Relaxation method 152</p>
<p>8.2.4. Block forms of the Jacobi, Gauss Seidel and relaxation methods 154</p>
<p>8.3. Convergence of iterative methods &nbsp;155</p>
<p>8.4. Conjugate gradient method 157</p>
<p>8.5. Using Matlab 159</p>
<p>8.5.1. Jacobi method 159</p>
<p>8.5.2. Relaxation method 160</p>
<p>Chapter 9. Numerical Methods for Computing Eigenvalues and Eigenvectors 163</p>
<p>9.1. Introduction 163</p>
<p>9.2. Computing det (A I) directly &nbsp;164</p>
<p>9.3. Krylov methods 166</p>
<p>9.4. LeVerrier method 167</p>
<p>9.5. Jacobi method 168</p>
<p>9.6. Power iteration method &nbsp;171</p>
<p>9.6.1. Deflation algorithm &nbsp;172</p>
<p>9.7. Inverse power method 173</p>
<p>9.8. Givens Householder method 174</p>
<p>9.8.1. Givens algorithm 175</p>
<p>9.9. Using Matlab 176</p>
<p>9.9.1. Application to a buckling beam &nbsp;&nbsp;177</p>
<p>Chapter 10. Least–squares Approximation &nbsp;185</p>
<p>10.1. Introduction 185</p>
<p>10.2. Analytic formulation 185</p>
<p>10.3. Algebraic formulation &nbsp;191</p>
<p>10.3.1. Standard results on orthogonality 191</p>
<p>10.3.2. Least–squares problem 191</p>
<p>10.3.3. Solving by orthogonalization &nbsp;192</p>
<p>10.4. Numerically solving linear equations by QR factorization 193</p>
<p>10.4.1. Householder transformations &nbsp;193</p>
<p>10.4.2. QR factorization 193</p>
<p>10.4.3. Application to the least–squares problem 193</p>
<p>10.5. Applications 194</p>
<p>10.5.1. Curve fitting 194</p>
<p>10.5.2. Approximations of derivatives &nbsp;&nbsp;195</p>
<p>10.6. Using Matlab 195</p>
<p>Part 4. Appendices 199</p>
<p>Appendix 1. Introduction to Matlab &nbsp;201</p>
<p>Appendix 2. Introduction to Optimization &nbsp;209</p>
<p>Bibliography 215</p>
<p>Index 217</p>

Rubrieken

    Personen

      Trefwoorden

        Advanced Numerical Methods with Matlab – Function Approximation and System Resolution