QGIS and Applications in Agriculture and Forest

Specificaties
Gebonden, 368 blz. | Engels
John Wiley & Sons | e druk, 2018
ISBN13: 9781786301888
Rubricering
John Wiley & Sons e druk, 2018 9781786301888
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

These four volumes present innovative thematic applications implemented using the open source software QGIS. These are applications that use remote sensing over continental surfaces. The volumes detail applications of remote sensing over continental surfaces, with a first one discussing applications for agriculture. A second one presents applications for forest, a third presents applications for the continental hydrology, and finally the last volume details applications for environment and risk issues.

Specificaties

ISBN13:9781786301888
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:368

Inhoudsopgave

<p>Introduction xi</p>
<p>Chapter 1. Coupling Radar and Optical Data for Soil Moisture Retrieval over Agricultural Areas&nbsp; 1<br />Mohammad EL HAJJ, Nicolas BAGHDADI, Mehrez ZRIBI and Hassan BAZZI</p>
<p>1.1. Context 1</p>
<p>1.2. Study site and satellite data &nbsp;2</p>
<p>1.2.1. Radar images 2</p>
<p>1.2.2. Optical image 4</p>
<p>1.2.3. Land cover map 4</p>
<p>1.3. Methodology 5</p>
<p>1.3.1. Inversion approach of radar signal for estimating soil moisture 5</p>
<p>1.3.2. Segmentation of crop and grasslands areas 6</p>
<p>1.3.3. Soil moisture mapping &nbsp;8</p>
<p>1.4. Implementation of the application via QGIS . 10</p>
<p>1.4.1. Layout 10</p>
<p>1.4.2. Radar images 14</p>
<p>1.4.3. Optical image 20</p>
<p>1.4.4. Land cover map 26</p>
<p>1.4.5. Segmentation of crop s areas and grasslands 26</p>
<p>1.4.6. Elimination of small spatial units &nbsp;29</p>
<p>1.4.7. Mapping soil moisture &nbsp;33</p>
<p>1.4.8. Soil moisture maps &nbsp;43</p>
<p>1.5. Bibliography 44</p>
<p>Chapter 2. Disaggregation of Thermal Images 47<br />Mar BISQUERT and Juan Manuel S&Aacute;NCHEZ</p>
<p>2.1. Definition and context &nbsp;47</p>
<p>2.2. Disaggregation method &nbsp;48</p>
<p>2.2.1. Image pre–processing &nbsp;48</p>
<p>2.2.2. Disaggregation 50</p>
<p>2.3. Practical application of the disaggregation method . 53</p>
<p>2.3.1. Input data 53</p>
<p>2.3.2. Step 1: pre–processing &nbsp;54</p>
<p>2.3.3. Step 2: disaggregation &nbsp;63</p>
<p>2.4. Results analysis 73</p>
<p>2.5. Bibliography 75</p>
<p>Chapter 3. Automatic Extraction of Agricultural Parcels from Remote Sensing Images and the RPG Database with QGIS/OTB 77<br />Jean–Marc GILLIOT, Camille LE PRIOL, Emmanuelle VAUDOUR and Philippe MARTIN</p>
<p>3.1. Context 77</p>
<p>3.2. Method of AP extraction &nbsp;79</p>
<p>3.2.1. Formatting the RPG data &nbsp;79</p>
<p>3.2.2. Classification of SPOT satellite images &nbsp;81</p>
<p>3.2.3. Intersect overlay between extracted AP and FB with crop validation 81</p>
<p>3.3. Practical application of the AP extraction &nbsp;82</p>
<p>3.3.1. Software and data 83</p>
<p>3.3.2. Setting up the Python script &nbsp;86</p>
<p>3.3.3. Step 1: formatting the RPG data &nbsp;89</p>
<p>3.3.4. Step 2: classification of SPOT satellite Images . 97</p>
<p>3.3.5. Step 3: intersect overlay between extracted AP and FB and crop validation 110</p>
<p>3.4. Acknowledgements 116</p>
<p>3.5. Bibliography 116</p>
<p>Chapter 4. Land Cover Mapping Using Sentinel–2 Images and the Semi–Automatic Classification Plugin: A Northern Burkina Faso Case Study 119<br />Louise LEROUX, Luca CONGEDO, Beatriz BELL&Oacute;N, Raffaele GAETANO and Agn&egrave;s B&Eacute;GU&Eacute;</p>
<p>4.1. Context 119</p>
<p>4.2. Workflow for land cover mapping &nbsp;120</p>
<p>4.2.1. Introduction to SCP and S2 images &nbsp;120</p>
<p>4.2.2. Pre–processing 122</p>
<p>4.2.3. Land cover classification &nbsp;126</p>
<p>4.2.4. Classification accuracy assessment and post–processing 129</p>
<p>4.3. Implementation with QGIS and the plugin SCP 131</p>
<p>4.3.1. Software and data 131</p>
<p>4.3.2. Step 1: data pre–processing &nbsp;133</p>
<p>4.3.3. Step 2: land cover classification &nbsp;139</p>
<p>4.3.4. Step 3: assessment of the classification accuracy and post–processing 144</p>
<p>4.4. Bibliography 150</p>
<p>Chapter 5. Detection and Mapping of Clear–Cuts with Optical Satellite Images &nbsp;153<br />Kenji OSE</p>
<p>5.1. Definition and context &nbsp;153</p>
<p>5.2. Clear–cuts detection method &nbsp;154</p>
<p>5.2.1. Step 1: change detection geometric and radiometric pre–processing 154</p>
<p>5.2.2. Steps 2 and 3: forest delimitation &nbsp;160</p>
<p>5.2.3. Step 4: clear–cuts classification &nbsp;160</p>
<p>5.2.4. Steps 5 and 6: export in vector mode &nbsp;162</p>
<p>5.2.5. Step 7: statistical evaluation. &nbsp;164</p>
<p>5.2.6. Method limits 166</p>
<p>5.3. Practical application 166</p>
<p>5.3.1. Software and data 166</p>
<p>5.3.2. Step 1: creation of the changes image &nbsp;168</p>
<p>5.3.3. Steps 2 and 3: creation, merging and integration of masks 170</p>
<p>5.3.4. Step 4: clear–cuts detection &nbsp;174</p>
<p>5.3.5. Step 5: vector conversion &nbsp;177</p>
<p>5.4. Bibliography 180</p>
<p>Chapter 6. Vegetation Cartography from Sentinel–1 Radar Images &nbsp;181<br />Pierre–Louis FRISON and C&eacute;dric LARDEUX</p>
<p>6.1. Definition and context &nbsp;181</p>
<p>6.2. Classification of remote sensing images &nbsp;183</p>
<p>6.3. Sentinel–1 data processing &nbsp;185</p>
<p>6.3.1. Radiometric calibration &nbsp;186</p>
<p>6.3.2. Ortho–rectification of calibrated data &nbsp;186</p>
<p>6.3.3. Clip over a common area &nbsp;187</p>
<p>6.3.4. Filtering to reduce the speckle effect &nbsp;187</p>
<p>6.3.5. Generation of color compositions based on different polarizations 188</p>
<p>6.4. Implementation of the processing within QGIS 189</p>
<p>6.4.1. Downloading data &nbsp;194</p>
<p>6.4.2. Calibration, ortho–rectification and stacking of Sentinel–1 data over a common area &nbsp;198</p>
<p>6.4.3. Speckle filtering 201</p>
<p>6.4.4. Other tools 202</p>
<p>6.5. Data classification 205</p>
<p>6.6. Bibliography 212</p>
<p>Chapter 7. Remote Sensing of Distinctive Vegetation in Guiana Amazonian Park &nbsp;215<br />Nicolas KARASIAK and Pauline PERBET</p>
<p>7.1. Context and definition &nbsp;215</p>
<p>7.1.1. Global context 215</p>
<p>7.1.2. Species 216</p>
<p>7.1.3. Remote sensing images available &nbsp;217</p>
<p>7.1.4. Software 219</p>
<p>7.1.5. Method implementation &nbsp;219</p>
<p>7.2. Software installation 220</p>
<p>7.2.1. Dependencies installation available in OsGeo . 220</p>
<p>7.2.2. Installation of scikit–learn &nbsp;221</p>
<p>7.2.3. Dzetsaka installation &nbsp;222</p>
<p>7.3. Method 222</p>
<p>7.3.1. Image processing 223</p>
<p>7.3.2. Cloud mask creation &nbsp;225</p>
<p>7.4. Processing 227</p>
<p>7.4.1. Creating training plots &nbsp;227</p>
<p>7.4.2. Classification with dzetsaka plugin &nbsp;230</p>
<p>7.4.3. Post–classification &nbsp;236</p>
<p>7.5. Final processing 239</p>
<p>7.5.1. Synthesis of predicted images &nbsp;240</p>
<p>7.5.2. Global synthesis and cleaning unwanted areas . 242</p>
<p>7.5.3. Statistical validation limits &nbsp;244</p>
<p>7.6. Conclusion 245</p>
<p>7.7. Bibliography 245</p>
<p>Chapter 8. Physiognomic Map of Natural Vegetation 247<br />Samuel ALLEAUME and Sylvio LAVENTURE</p>
<p>8.1. Context 247</p>
<p>8.2. Method 247</p>
<p>8.2.1. Segmentation of the VHSR mono–date image . 249</p>
<p>8.2.2. Calculation of temporal variability indices 249</p>
<p>8.2.3. Extraction of natural vegetation using time series 251</p>
<p>8.2.4. Vegetation densities &nbsp;252</p>
<p>8.2.5. Maximum productivity index of herbaceous areas 255</p>
<p>8.3. Implementation of the application &nbsp;256</p>
<p>8.3.1. Study area 256</p>
<p>8.3.2. Software and data 257</p>
<p>8.3.3. Step 1: VHSR image processing &nbsp;259</p>
<p>8.3.4. Step 2: calculation of the variability indices on the time series 264</p>
<p>8.3.5. Step 3: extraction of the natural vegetations from the time series of Sentinel–2 image by thresholding method 267</p>
<p>8.3.6. Step 4: classification of vegetation density by supervised classification SVM 274</p>
<p>8.3.7. Step 5: extraction of the level of productivity of grasslands 277</p>
<p>8.3.8. Step 6: final map 279</p>
<p>8.4. Bibliography 282</p>
<p>Chapter 9. Object–Based Classification for Mountainous Vegetation Physiognomy Mapping &nbsp;283<br />Vincent THIERION and Marc LANG</p>
<p>9.1. Definition and context &nbsp;283</p>
<p>9.2. Method for detecting montane vegetation physiognomy 284</p>
<p>9.2.1. Satellite image pre–processing &nbsp;286</p>
<p>9.2.2. Image segmentation &nbsp;289</p>
<p>9.2.3. Sampling, learning and segmented image classification 291</p>
<p>9.2.4. Statistical validation of classification &nbsp;295</p>
<p>9.2.5. Limits of the method &nbsp;297</p>
<p>9.3. Application in QGIS 298</p>
<p>9.3.1 Pre–processing 299</p>
<p>9.3.2. Segmentation 312</p>
<p>9.3.3. Classification 319</p>
<p>9.4. Bibliography 337</p>
<p>List of Authors 341</p>
<p>Index 343</p>
<p>Scientific Committee 347</p>

Rubrieken

    Personen

      Trefwoorden

        QGIS and Applications in Agriculture and Forest