Fourier Analysis

Specificaties
Gebonden, 266 blz. | Engels
John Wiley & Sons | e druk, 2017
ISBN13: 9781786301093
Rubricering
John Wiley & Sons e druk, 2017 9781786301093
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This book aims to learn to use the basic concepts in signal processing. Each chapter is a reminder of the basic principles is presented followed by a series of corrected exercises. After resolution of these exercises, the reader can pretend to know those principles that are the basis of this theme. "We do not learn anything by word, but by example."

Specificaties

ISBN13:9781786301093
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:266

Inhoudsopgave

<p>Preface xi</p>
<p>Chapter 1. Fourier Series&nbsp; 1</p>
<p>1.1. Theoretical background 1</p>
<p>1.1.1. Orthogonal functions&nbsp; 1</p>
<p>1.1.2. Fourier Series 3</p>
<p>1.1.3. Periodic functions&nbsp; 5</p>
<p>1.1.4. Properties of Fourier series 6</p>
<p>1.1.5. Discrete spectra. Power distribution 8</p>
<p>1.2. Exercises&nbsp; 9</p>
<p>1.2.1. Exercise 1.1. Examples of decomposition calculations&nbsp; 10</p>
<p>1.2.2. Exercise 1.2&nbsp; 11</p>
<p>1.2.3. Exercise 1.3&nbsp; 12</p>
<p>1.2.4. Exercise 1.4&nbsp; 12</p>
<p>1.2.5. Exercise 1.5&nbsp; 12</p>
<p>1.2.6. Exercise 1.6. Decomposing rectangular functions 13</p>
<p>1.2.7. Exercise 1.7. Translation and composition of functions&nbsp; 14</p>
<p>1.2.8. Exercise 1.8. Time derivation of a function 15</p>
<p>1.2.9. Exercise 1.9. Time integration of functions 15</p>
<p>1.2.10. Exercise 1.10&nbsp; 15</p>
<p>1.2.11. Exercise 1.11. Applications in electronic circuits 16</p>
<p>1.3. Solutions to the exercises&nbsp; 17</p>
<p>1.3.1. Exercise 1.1. Examples of decomposition calculations&nbsp; 17</p>
<p>1.3.2. Exercise 1.2&nbsp; 25</p>
<p>1.3.3. Exercise 1.3&nbsp; 26</p>
<p>1.3.4. Exercice 1.4&nbsp; 26</p>
<p>1.3.5. Exercise 1.5&nbsp; 27</p>
<p>1.3.6. Exercise 1.6 27</p>
<p>1.3.7. Exercise 1.7. Translation and composition of functions&nbsp; 29</p>
<p>1.3.8. Exercise 1.8. Time derivation of functions&nbsp; 31</p>
<p>1.3.9. Exercise 1.9. Time integration of functions&nbsp; 32</p>
<p>1.3.10. Exercise 1.10 32</p>
<p>1.3.11. Exercise 1.11 35</p>
<p>Chapter 2. Fourier Transform&nbsp; 39</p>
<p>2.1. Theoretical background&nbsp; 39</p>
<p>2.1.1. Fourier transform 39</p>
<p>2.1.2. Properties of the Fourier transform&nbsp; 42</p>
<p>2.1.3. Singular functions 46</p>
<p>2.1.4. Fourier transform of common functions&nbsp; 51</p>
<p>2.1.5. Calculating Fourier transforms using the Dirac impulse method&nbsp; 53</p>
<p>2.1.6. Fourier transform of periodic functions&nbsp; 54</p>
<p>2.1.7. Energy density 54</p>
<p>2.1.8. Upper limits to the Fourier transform 55</p>
<p>2.2. Exercises&nbsp; 56</p>
<p>2.2.1. Exercise 2.1&nbsp; 56</p>
<p>2.2.2. Exercise 2.2&nbsp; 57</p>
<p>2.2.3. Exercise 2.3&nbsp; 58</p>
<p>2.2.4. Exercise 2.4&nbsp; 59</p>
<p>2.2.5. Exercise 2.5&nbsp; 59</p>
<p>2.2.6. Exercise 2.6&nbsp; 59</p>
<p>2.2.7. Exercise 2.7&nbsp; 60</p>
<p>2.2.8. Exercise 2.8&nbsp; 60</p>
<p>2.2.9. Exercise 2.9&nbsp; 61</p>
<p>2.2.10. Exercise 2.10 62</p>
<p>2.2.11. Exercise 2.11 62</p>
<p>2.2.12. Exercise 2.12 63</p>
<p>2.2.13. Exercise 2.13 63</p>
<p>2.2.14. Exercise 2.14 64</p>
<p>2.2.15. Exercise 2.15 64</p>
<p>2.2.16. Exercise 2.16 65</p>
<p>2.2.17. Exercise 2.17 66</p>
<p>2.3. Solutions to the exercises 67</p>
<p>2.3.1. Exercise 2.1&nbsp; 67</p>
<p>2.3.2. Exercise 2.2&nbsp; 68</p>
<p>2.3.3. Exercise 2.3&nbsp; 74</p>
<p>2.3.4. Exercise 2.4&nbsp; 74</p>
<p>2.3.5. Exercise 2.5&nbsp; 76</p>
<p>2.3.6. Exercise 2.6&nbsp; 76</p>
<p>2.3.7. Exercise 2.7&nbsp; 77</p>
<p>2.3.8. Exercise 2.8&nbsp; 79</p>
<p>2.3.9. Exercise 2.9&nbsp; 82</p>
<p>2.3.10. Exercise 2.10&nbsp; 85</p>
<p>2.3.11 Exercise 2.11 86</p>
<p>2.3.12 Exercise 2.12 88</p>
<p>2.3.13 Exercise 2.13 91</p>
<p>2.3.14 Exercise 2.14 91</p>
<p>2.3.15 Exercice 2.15&nbsp; 92</p>
<p>2.3.16 Exercise 2.16 94</p>
<p>2.3.17 Exercise 2.17 95</p>
<p>Chapter 3. Laplace Transform 97</p>
<p>3.1. Theoretical background 97</p>
<p>3.1.1. Definition 97</p>
<p>3.1.2. Existence of the Laplace transform&nbsp; 98</p>
<p>3.1.3. Properties of the Laplace transform&nbsp; 98</p>
<p>3.1.4. Final value and initial value theorems&nbsp; 102</p>
<p>3.1.5. Determining reverse transforms&nbsp; 102</p>
<p>3.1.6. Approximation methods&nbsp; 105</p>
<p>3.1.7. Laplace transform and differential equations&nbsp; 107</p>
<p>3.1.8. Table of common Laplace transforms&nbsp; 108</p>
<p>3.1.9. Transient state and steady state&nbsp; 110</p>
<p>3.2. Exercise instruction&nbsp; 111</p>
<p>3.2.1. Exercise 3.1&nbsp; 111</p>
<p>3.2.2. Exercise 3.2&nbsp; 111</p>
<p>3.2.3. Exercise 3.3&nbsp; 112</p>
<p>3.2.4. Exercise 3.4&nbsp; 112</p>
<p>3.2.5. Exercise 3.5&nbsp; 112</p>
<p>3.2.6. Exercise 3.6&nbsp; 113</p>
<p>3.2.7. Exercise 3.7&nbsp; 113</p>
<p>3.2.8. Exercise 3.8&nbsp; 115</p>
<p>3.2.9. Exercise 3.9&nbsp; 115</p>
<p>3.2.10. Exercise 3.10&nbsp; 115</p>
<p>3.3. Solutions to the exercises&nbsp; 116</p>
<p>3.3.1. Exercise 3.1&nbsp; 116</p>
<p>3.3.2. Exercise 3.2&nbsp; 117</p>
<p>3.3.3. Exercise 3.3&nbsp; 121</p>
<p>3.3.4. Exercise 3.4&nbsp; 122</p>
<p>3.3.5. Exercise 3.5&nbsp; 130</p>
<p>3.3.6. Exercise 3.6&nbsp; 131</p>
<p>3.3.7. Exercise 3.7&nbsp; 132</p>
<p>3.3.8. Exercise 3.8&nbsp; 136</p>
<p>3.3.9. Exercise 3.9&nbsp; 138</p>
<p>3.3.10. Exercise 3.10 139</p>
<p>Chapter 4. Integrals and Convolution Product&nbsp; 143</p>
<p>4.1. Theoretical background&nbsp; 143</p>
<p>4.1.1. Analyzing linear systems using convolution integrals 143</p>
<p>4.1.2. Convolution properties&nbsp; 144</p>
<p>4.1.3. Graphical interpretation of the convolution product 145</p>
<p>4.1.4. Convolution of a function using a unit impulse 145</p>
<p>4.1.5. Step response from a system&nbsp; 147</p>
<p>4.1.6. Eigenfunction of a convolution operator 148</p>
<p>4.2. Exercises&nbsp; 149</p>
<p>4.2.1. Exercise 4.1&nbsp; 149</p>
<p>4.2.2. Exercise 4.2&nbsp; 150</p>
<p>4.2.3. Exercise 4.3&nbsp; 150</p>
<p>4.2.4. Exercise 4.4&nbsp; 151</p>
<p>4.2.5. Exercise 4.5&nbsp; 151</p>
<p>4.2.6. Exercise 4.6&nbsp; 152</p>
<p>4.3. Solutions to the exercises 153</p>
<p>4.3.1. Exercise 4.1&nbsp; 153</p>
<p>4.3.2. Exercise 4.2&nbsp; 156</p>
<p>4.3.3. Exercise 4.3&nbsp; 160</p>
<p>4.3.4. Exercise 4.4&nbsp; 163</p>
<p>4.3.5. Exercise 4.5&nbsp; 164</p>
<p>4.3.6. Exercise 4.6&nbsp; 165</p>
<p>Chapter 5. Correlation 169</p>
<p>5.1. Theoretical background&nbsp; 169</p>
<p>5.1.1. Comparing signals&nbsp; 169</p>
<p>5.1.2. Correlation function 170</p>
<p>5.1.3. Properties of correlation functions 172</p>
<p>5.1.4. Energy of a signal 176</p>
<p>5.2. Exercises&nbsp; 177</p>
<p>5.2.1. Exercise 5.1&nbsp; 177</p>
<p>5.2.2. Exercise 5.2&nbsp; 178</p>
<p>5.2.3. Exercise 5.3&nbsp; 178</p>
<p>5.2.4. Exercise 5.4&nbsp; 178</p>
<p>5.2.5. Exercice 5.5&nbsp; 179</p>
<p>5.2.6. Exercice 5.6&nbsp; 179</p>
<p>5.2.7. Exercise 5.7&nbsp; 179</p>
<p>5.2.8. Exercice 5.8&nbsp; 180</p>
<p>5.2.9. Exercise 5.9&nbsp; 180</p>
<p>5.2.10. Exercise 5.10&nbsp; 181</p>
<p>5.2.11. Exercise 5.11&nbsp; 181</p>
<p>5.2.12. Exercise 5.12&nbsp; 182</p>
<p>5.2.13. Exercise 5.13&nbsp; 182</p>
<p>5.2.14. Exercise 5.14&nbsp; 183</p>
<p>5.3. Solutions to the exercises&nbsp; 183</p>
<p>5.3.1. Exercise 5.1&nbsp; 183</p>
<p>5.3.2. Exercice 5.2&nbsp; 188</p>
<p>5.3.3. Exercise 5.3&nbsp; 191</p>
<p>5.3.4. Exercice 5.4&nbsp; 192</p>
<p>5.3.5. Exercise 5.5&nbsp; 193</p>
<p>5.3.6. Exercise 5.6&nbsp; 196</p>
<p>5.3.7. Exercise 5.7&nbsp; 197</p>
<p>5.3.8. Exercise 5.8&nbsp; 201</p>
<p>5.3.9. Exercise 5.9&nbsp; 204</p>
<p>5.3.10. Exercise 5.10&nbsp; 205</p>
<p>5.3.11 Exercise 5.11 206</p>
<p>5.3.12 Exercise 5.12 207</p>
<p>5.3.13 Exercise 5.13 208</p>
<p>5.3.14 Exercise 5.14 209</p>
<p>Chapter 6. Signal Sampling 213</p>
<p>6.1. Theoretical background 213</p>
<p>6.1.1. Sampling principle&nbsp; 213</p>
<p>6.1.2. Ideal sampling&nbsp; 214</p>
<p>6.1.3. Finite width sampling&nbsp; 218</p>
<p>6.1.4. Sample and hold (S/H) sampling 221</p>
<p>6.2. Exercises&nbsp; 225</p>
<p>6.2.1. Exercise 6.1&nbsp; 225</p>
<p>6.2.2. Exercise 6.2&nbsp; 225</p>
<p>6.2.3. Exercise 6.3&nbsp; 226</p>
<p>6.2.4. Exercise 6.4&nbsp; 226</p>
<p>6.2.5. Exercise 6.5&nbsp; 226</p>
<p>6.2.6. Exercise 5.6&nbsp; 227</p>
<p>6.2.7. Exercise 6.7&nbsp; 227</p>
<p>6.2.8. Exercice 6.8&nbsp; 228</p>
<p>6.3. Solutions to the exercises 229</p>
<p>6.3.1. Exercise 6.1&nbsp; 229</p>
<p>6.3.2. Exercise 6.2&nbsp; 229</p>
<p>6.3.3. Exercise 6.3&nbsp; 233</p>
<p>6.3.4. Exercice 6.4&nbsp; 235</p>
<p>6.3.5. Exercise 6.5&nbsp; 236</p>
<p>6.3.6. Exercise 6.6&nbsp; 238</p>
<p>6.3.7. Exercise 6.7&nbsp; 240</p>
<p>6.3.8. Exercise 6.8&nbsp; 242</p>
<p>Bibliography&nbsp; 245</p>
<p>Index 247</p>

Rubrieken

    Personen

      Trefwoorden

        Fourier Analysis