,

Stochastic Risk Analysis and Management

Specificaties
Gebonden, 164 blz. | Engels
John Wiley & Sons | e druk, 2017
ISBN13: 9781786300089
Rubricering
John Wiley & Sons e druk, 2017 9781786300089
Verwachte levertijd ongeveer 16 werkdagen

Samenvatting

The author investigates the Cramer Lundberg model, collecting the most interesting theorems and methods, which estimate probability of default for a company of insurance business. These offer different kinds of approximate values for probability of default on the base of normal and diffusion approach and some special asymptotic.

Specificaties

ISBN13:9781786300089
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:164

Inhoudsopgave

<p>Chapter 1. Mathematical Bases&nbsp; 1</p>
<p>1.1. Introduction to stochastic risk analysis&nbsp; 1</p>
<p>1.1.1. About the subject&nbsp; 1</p>
<p>1.1.2. About the ruin model&nbsp; 2</p>
<p>1.2. Basic methods&nbsp; 4</p>
<p>1.2.1. Some concepts of probability theory 4</p>
<p>1.2.2. Markov processes&nbsp; 14</p>
<p>1.2.3. Poisson process 18</p>
<p>1.2.4. Gamma process 21</p>
<p>1.2.5. Inverse gamma process 23</p>
<p>1.2.6. Renewal process 24</p>
<p>Chapter 2. Cram&eacute;r–Lundberg Model 29</p>
<p>2.1. Infinite horizon 29</p>
<p>2.1.1. Initial probability space 29</p>
<p>2.1.2. Dynamics of a homogeneous insurance company portfolio 30</p>
<p>2.1.3. Ruin time&nbsp; 33</p>
<p>2.1.4. Parameters of the gain process 33</p>
<p>2.1.5. Safety loading&nbsp; 35</p>
<p>2.1.6. Pollaczek–Khinchin formula&nbsp; 36</p>
<p>2.1.7. Sub–probability distribution G+&nbsp; 38</p>
<p>2.1.8. Consequences from the Pollaczek–Khinchin formula&nbsp; 41</p>
<p>2.1.9. Adjustment coefficient of Lundberg&nbsp; 44</p>
<p>2.1.10. Lundberg inequality&nbsp; 45</p>
<p>2.1.11. Cram&eacute;r asymptotics&nbsp; 46</p>
<p>2.2. Finite horizon&nbsp; 49</p>
<p>2.2.1. Change of measure 49</p>
<p>2.2.2. Theorem of Gerber 54</p>
<p>2.2.3. Change of measure with parameter gamma 56</p>
<p>2.2.4. Exponential distribution of claim size 57</p>
<p>2.2.5. Normal approximation 64</p>
<p>2.2.6. Diffusion approximation&nbsp; 68</p>
<p>2.2.7. The first exit time for the Wiener process 70</p>
<p>Chapter 3. Models With the Premium Dependent on the Capital&nbsp; 77</p>
<p>3.1. Definitions and examples&nbsp; 77</p>
<p>3.1.1. General properties&nbsp; 78</p>
<p>3.1.2. Accumulation process 81</p>
<p>3.1.3. Two levels&nbsp; 86</p>
<p>3.1.4. Interest rate 90</p>
<p>3.1.5. Shift on space&nbsp; 91</p>
<p>3.1.6. Discounted process 92</p>
<p>3.1.7. Local factor of Lundberg&nbsp; 98</p>
<p>Chapter 4. Heavy Tails&nbsp; 107</p>
<p>4.1. Problem of heavy tails 107</p>
<p>4.1.1. Tail of distribution 107</p>
<p>4.1.2. Subexponential distribution&nbsp; 109</p>
<p>4.1.3. Cram&eacute;r–Lundberg process 117</p>
<p>4.1.4. Examples&nbsp; 120</p>
<p>4.2. Integro–differential equation&nbsp; 124</p>
<p>Chapter 5. Some Problems of Control&nbsp; 129</p>
<p>5.1. Estimation of probability of ruin on a finite interval 129</p>
<p>5.2. Probability of the credit contract realization 130</p>
<p>5.2.1. Dynamics of the diffusion–type capital&nbsp; 132</p>
<p>5.3. Choosing the moment at which insurance begins 135</p>
<p>5.3.1. Model of voluntary individual insurance 135</p>
<p>5.3.2. Non–decreasing continuous semi–Markov process&nbsp; 139</p>
<p>Bibliography&nbsp; 147</p>
<p>Index 149</p>

Rubrieken

    Personen

      Trefwoorden

        Stochastic Risk Analysis and Management