Preface.- Chapter 1. Oxidative stress injury in glomerular mesangium .- Chapter 2. Transition Metals and other Forms of Oxidative Protein Damage in .- Renal Disease.- Chapter 3. Cyclo-oxygenase in the kidney and oxidative stress .- Chapter 4. Renin angiotensin system in the kidney and oxidative stress -Local Renin-Angiotensin-Aldosterone-System and NAD(P)H oxidase-dependent oxidative stress in the kidney- .- Chapter 5. Thiamine in diabetic renal disease – dietary insufficiency, renal.- washout, anti-stress gene response, therapeutic supplements, risk predictor and link to genetic susceptibility.- Chapter 6. Novel members of the globin family and their function against oxidative stress .- Clinical Aspects of Oxidative Stress in the Kidney.- Chapter 7. Hypertension .- Chapter 8. Uric acid and oxidative stress .- Chapter 9. Reactive oxygen and nitrogen species, oxidative and nitrosative .- stress and their role in the pathogenesis of acute kidney injury.- Chapter 10. Oxidative stress in the kidney: proximal tubule disorders .- Chapter 11. Iron metabolism and oxidative stress .- Chapter 12. Hypoxia, oxidative stress and the pathophysiology of contrast-media-induced nephropathy .- Chapter 13. Cardiovascular complications in renal failure: implications of advanced glycation end-products and their receptor, RAGE .- Chapter 14. Infection and the kidney .- Chapter 15. Oxidative/carbonyl stress in the renal circulation and cardiovascular renal injury .- .- Current Therapy Targeting Oxidative Stress.- Chapter 16. Renin angiotensin system .- Chapter 17. Oxidative stress in kidney injury-peroxisome proliferator-activated receptor- agonists are in control.- Chapter 18. Statin .- Chapter 19. N-acetylcysteine in kidney disease .- Chapter 20. Advanced glycation end products (AGEs) inhibitor .- Section 2. ‘Hypoxia’.- Hypoxia Biology.- Chapter 21. Involvement of hypoxia-inducible factor 1 in physiological and pathological responses to continuous and intermittenthypoxia: Role of reactive oxygen species .- Chapter 22. Regulation of oxygen homeostasis by PHDs .- Chapter 23. Oxygen-dependent regulation of erythropoiesis .- Chapter 24. Intricate link between hypoxia and oxidative stress in chronic kidney disease .- Chapter 25. RNA interference and the regulation of renal gene expression in .- hypoxia.- Hypoxia Pathology in Renal Disorders.- Chapter 26.Cardio-renal connection: The role of hypoxia and oxidative stress .- Chapter 27. HIF in acute kidney injury – from pathophysiology to a novel approach of organ protection .- Chapter 28. Hypoxia in chronic kidney disease: the final common pathway to end stage renal disease .- Chapter 29. Oxidative stress and hypoxia in the pathogenesis of diabetic.- nephropathy .- Chapter 30. Estimation of kidney oxygenation by BOLD-MRI .- Chapter 31. Anemia and progression of chronic kidney disease.- Section 3. Novel therapeutic approaches against oxidative stress and hypoxia.- Chapter 32. Novel therapeutic approaches against hypoxia and oxidative stress,targeting intracellular sensor molecules for oxygen and oxidative stress .- Chapter 33. Endoplasmic reticulum (ER) stress as a target of therapy against oxidative stress and hypoxia .- Chapter 34. Stem cell therapy against oxidative stress and hypoxia.