Nonparametric Smoothing and Lack-of-Fit Tests

Specificaties
Paperback, 288 blz. | Engels
Springer New York | 0e druk, 2012
ISBN13: 9781475727241
Rubricering
Springer New York 0e druk, 2012 9781475727241
Onderdeel van serie Springer Series in Statistics
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

An exploration of the use of smoothing methods in testing the fit of parametric regression models. The book reviews many of the existing methods for testing lack-of-fit and also proposes a number of new methods, addressing both applied and theoretical aspects of the model checking problems. As such, the book is of interest to practitioners of statistics and researchers investigating either lack-of-fit tests or nonparametric smoothing ideas. The first four chapters introduce the problem of estimating regression functions by nonparametric smoothers, primarily those of kernel and Fourier series type, and could be used as the foundation for a graduate level course on nonparametric function estimation. The prerequisites for a full appreciation of the book are a modest knowledge of calculus and some familiarity with the basics of mathematical statistics.

Specificaties

ISBN13:9781475727241
Taal:Engels
Bindwijze:paperback
Aantal pagina's:288
Uitgever:Springer New York
Druk:0

Inhoudsopgave

1. Introduction.- 2. Some Basic Ideas of Smoothing.- 3. Statistical Properties of Smoothers.- 4. Data-Driven Choice of Smoothing Parameters.- 5. Classical Lack-of-Fit Tests.- 6. Lack-of-Fit Tests Based on Linear Smoothers.- 7. Testing for Association via Automated Order Selection.- 8. Data-Driven Lack-of-Fit Tests for General Parametric Models.- 9. Extending the Scope of Application.- 10. Some Examples.- A.2. Bounds for the Distribution of Tcusum.- References.

Rubrieken

    Personen

      Trefwoorden

        Nonparametric Smoothing and Lack-of-Fit Tests