Interaction of Radiation with Atoms and Molecules.- Abstract.- I. Introduction.- II. Quantum Theory of Molecular Systems.- II.A. The Hamiltonian of a Molecular System.- II.B. The Adiabatic Approximation.- II.C. The Role of Symmetry.- III. Quantum Theory of the Radiative Field.- III.A. The Classical Radiative Field.- III.B. Solutions of the Field Equation.- III.C. Periodic Boundary Conditions and Density of States.- III.D. The Hamiltonian of the Radiative Field.- III.E. The Quantum Radiative Field.- III.F. The Energy Levels and the Eigenfunctions of a Radiative Field.- III.G. The Operator Vector Potential.- IV. Interaction of a Radiative Field with a Charged Particle.- IV.A. The Hamiltonian of a Charged Particle in an Electromagnetic Field.- IV.B. The Interaction of a Charged Particle with a Radiative Field.- IV.C. Radiative Processes.- IV.D. First Order Processes.- IV.E. Electric Dipole Processes.- V. Absorption and Emission of Radiation.- V.A. Transition Probabilities for Absorption and Emission.- V.B. “Upward” and “Downward” Induced Transitions.- V.C. Einstein’s A and B Coefficients.- V.D. Absorption and Emission in the Electric Dipole Approximation.- V.E. Interaction of Radiation with Molecular Systems. The Franck-Condon Principle.- References.- to Molecular Spectroscopy.- Abstract.- I. Historical Introduction.- II. Theory of Electronic Spectra.- II.A. Electronic States.- 1. Classification.- 2. Electronic Selection Rules.- II.B. Vibrational Structure.- 1. Vibrational Energy Formulae.- 2. Franck-Condon Principle.- 3. Vibrational Selection Rules.- II.C. Rotational Structure.- 1. Rotational Energy Levels.- 2. Symmetry Properties.- 3. Rotational Selection Rules.- III. Molecular Orbitals and Spectra of Triatomic Molecules.- III.A. AH2 Molecules.- 1. Five Electrons: BH2, AlH2.- 2. Six Electrons: CH2, SiH2.- 3. Seven Electrons: NH2, PH2, H2O+, H2S+.- 4. Eight Electrons: H2O, H2S.- III.B. HAB Molecules.- 1. Ten Electrons: HCN, HCP.- 2. Eleven Electrons: HCO.- 3. Twelve Electrons: HNO, HPO, HCF, HCCl, HSiCl.- 4. Thirteen Electrons:HO2, HS2, HNF.- III.C. AB2 and BAC Molecules.- 1. Twelve Electrons: C3.- 2. Thirteen Electrons: CNC and CCN.- 3. Fourteen Electrons: NCN and CCO.- 4. Fifteen Electrons: CO2+, CS2+, BO2, N3, NCO, NCS, N2O+, COS+.- 5. Sixteen Electrons: CO2, CS2, COS, N2O.- 6. Seventeen Electrons: NO2.- 7. Eighteen Electrons: O3, SO2, S2O, CF2, SiF2, FNO, ClNO.- 8. Nineteen Electrons: References: ClO2, NF2.- References.- Laser Excitation of Optical Spectra.- Abstract.- I. Characteristics and Types of Lasers.- I.A. CW Lasers.- I.B. Pulsed Lasers.- II. Excitation of Molecular Spectra.- II.A. Band Spectra.- II.B. Resonance Fluorescence.- III. Saturation Spectroscopy.- IV. Two-Photon Spectroscopy.- IV.A. Detection of Two-Photon Processes.- IV.B. High Resolution Spectra without Doppler Broadening.- References.- Techniques of Flash Photolysis.- Abstract.- I. Introduction.- II. Discharge Circuits.- II.A. Series Resistors for Flash Lamps.- II.B. Flash Lamp Design.- III. Examples of Flash Photolysis Apparatuses.- IV. Kinetic Studies by Means of Flash Photolysis.- V. Calculation of Rate Processes Which Are as Fast as the Flash Decay.- VI. Numerical Analysis of Experimental Data References.- Some Fast Reactions in Gases Studied by Flash Photolysis and Kinetic Spectroscopy.- I. Introduction.- II. Flash Photolysis and Kinetic Spectroscopy.- III. Vibrational Excitation by Primary Reaction. The Flash Photolysis of Nitrosyl Halides -- Vibrational Relaxation.- IV. Vibrational Excitation by Secondary Reactions.- IV.A. The Reactions of Oxygen Atoms.- IV.B. The Photolysis of Ozone.- V. Application of the Adiabatic Method. The Study of Explosive Processes Exemplified by the Oxidation of Hydrides.- VI. A General Mechanism for the Combustion of Hydrides.- References.- Electronic and Vibrational Energy Transfer.- Abstract.- I. Introduction.- II. Vibration — Translation Transfer.- III. Vibration — Vibration Transfer.- IV. Vibrational Relaxation in Excited Electronic States.- V. Electronic to Vibrational Energy Transfer.- VI. Electronic — Electronic Transfer.- References.- The Chemical Production of Excited Species.- Abstract.- I. Introduction.- II. The Formation of Excited Species in Combination Processes.- II.A. Introduction.- II.B. Direct Two-Body Combination.- II.C. Two-Body Combination with Curve-Crossing (Preassociation).- II.D. Three-Body Combination.- III. Chemiluminescence in Atom Transfer Processes.- III.A. Adiabatic Atom Transfer Reactions.- III.B. Non-Adiabatic Atom Transfer Reactions.- IV. Chemiluminescence in Other Chemical Systems.- References.- Two-Photon Spectroscopy in the Gas Phase.- Abstract.- I. Introduction.- II. Theory.- III. Methods of Assignment in Two-Photon Spectroscopy.- IV. Lifetimes.- References.- Lifetime Spectroscopy.- Abstract.- I. Introduction.- II. New Techniques.- III. Conclusion and Future.- References.- The Study of Electronic Spectra in Crystalline Solid Solutions.- Abstract.- I. Introduction.- II. Naphthalene in Durene.- III. Orientation of Molecules in Solid Solution.- IV. Spectrum Analysis.- IV.A. Pyrazine and Pyridine.- IV.B. Trans-Stilbene.- IV.C. Benzoic Acid Dimer.- IV.D. Vibronic Interference.- V. Conclusions.- References.- Core Excitation and Electron Correlation in Crystals.- Abstract.- I. Fundamentals of Core-Exciton Theory.- I.A. Representations by Bloch and Wannier Functions.- 1. A Ground State of a Model Insulator.- 2. States of One-Electron Excitation.- I.B. Exciton Wavefunctions.- 1. Frenkel Excitons.- 2. Wannier Excitons.- I.C. Core-Excitons.- 1. Energy Matrix in the Wannier-Function Representation.- 2. Approximations in Core-Excitons.- I.D. Hole-Electron Interactions.- 1. The Excited-Electron Orbital.- 2. Complementary States.- 3. Multiplets.- I.E. Spin-Orbit Interactions.- II. Vacuum-Ultraviolet Absorption of Alkali Halides.- II.A. Application of the Core-Exciton Theory.- 1. The Starting Model.- 2. Calculation of Exciton Multiplets.- 3. Transition Dipole Moments.- 4. Excitation Transfer.- II.B. Interpretation of the Spectra.- 1. The Energy Level Diagram.- 2. Comparison with the Experiments.- II.C. Effects of Electron Correlation.- 1. Comparison with the Wannier Exciton Theory.- 2. Importance of the Configuration Mixing.- 3. Relaxation of the Excited-Electron Orbitals.- III. X-Ray Spectroscopy of Transition-Metal Compounds.- III.A. Covalency in the Absence of a Hole.- 1. A Covalency Parameter.- 2. Hartree-Fock Equation.- 3. Calculation of the Covalency Parameter.- III.B. Hole-Induced Covalency.- 1. Mixing of Two Configurations.- 2. Increase of the Covalency Parameter.- III.C. Shake-Up Satellites.- 1. Sudden Approximation.- 2. Configuration Interaction Satellites.- 3. Multiplet Satellites.- III.D. Interpretation of Photoelectron and K-Emission Spectra.- 1. The Theoretical Scheme.- 2. Calculation of Term Energies.- 3. Calculation of the Spin-Orbit Interaction Matrices.- 4. Calculation of Transition Intensities.- 5. Comparison with Experiments.- 6. Satellites Due to the Hole-Induced Covalency.- References.- Molecular Excitons in Small Aggregates.- Abstract.- I. Atomic and Molecular Excitons.- II. The Strong-Coupling Molecular Exciton: Dimers.- III. Phenomenology of Exciton States in Dimers.- IV. Linear Chain Polymers.- V. Exciton States of Helical Polymers.- VI. Exciton States in Molecular Lamellar Arrays.- VII. Molecular Exciton in Spherical Arrays.- VIII. Dynamical Aspects and Photosensitization.- References.- Singlet Molecular Oxygen: From a Scientific Curiosity to a Ubiquitous Chemical Species.- Triplet State Excitation Phenomena.- Spectroscopic Theory of the Solvent Cage.- Multiple Excitation in Composite Molecules.- Long Seminars (Abstracts).- Optical Spectroscopy of Molecular Ions.- Some Properties of the Excited States of Molecular Crystals.- Time-Resolved Spectroscopy of Self-Trapped Excitons in Alkali-Halide Crystals.- Molecular Aspects of Photochemical Dissociations.- Energy Migration in Solids.- Photoionization Resonance Spectra.- Electron Spectroscopy.- Short Seminars (Abstracts).- The 22P State of the Li Atom.- The “Generator Coordinate” Method and Molecular Vibrations.- Magnetic Dichroism Spectroscopy.- The Chemiluminescing Products of the Disilane-Fluorine, Disilane-Chlorine and Disilane-Ozone Reactions.- Collisional Transfer of Excitation in High-Pressure Rare Gases and Mixtures.- A Shock Tube-Laser Schlieren Measurements of the Dissociation of Molecular Chlorine.- Core Excitons in Synchrotron Radiation Absorption Spectra.- Reactions of Singlet Excited Dyes in Sensitized Photo-Oxidations.- A Model System for Photobiology: The Azoaldolase.- Relaxed Excited State of F-Centers.- List of Contributors.