1 Introduction.- I. Classification and Chemistries of Immobilized Enzymes.- 2 Covalent Linkage: I. Enzymes Immobilized by Covalent Linkage on Insolubilized Supports.- 1. Introduction.- 2. Methods of Enzyme Attachment.- 3. References.- 3 Covalent Linkage: II. Intramolecular Linkages.- 1. Introduction.- 2. Bifunctional Reagents.- 3. Condensation Reactions.- 4. References.- 4 Covalent Linkage: III. Immobilization of Enzymes by Intermolecular Cross-Linking.- 1. Introduction.- 2. Methodology.- 3. Advantages and Disadvantages.- 4. Properties.- 5. References.- 5 Immobilization of Enzymes by Adsorption.- 1. Introduction.- 2. Methodology.- 3. Advantages and Disadvantages.- 4. Properties of Adsorbed Enzymes.- 5. References.- 6 Gel-Entrapment of Enzymes.- 1. Introduction.- 2. Materials and Methods Used for Entrapping Enzymes.- 3. General Considerations Concerning Immobilization of Catalytic Material.- 4. References.- 7 Encapsulation of Enzymes, Cell Contents, Cells, Vaccines, Antigens, Antiserum, Cofactors, Hormones, and Proteins.- 1. Principles.- 2. Artificial Cells.- 3. Enzyme Kinetics and Stability.- 4. Variation in Membrane Materials and Configurations Used in the Encapsulation of Enzymes and Proteins.- 5. Variation of Contents in Encapsulated Enzyme-Protein Systems.- 6. References.- II. Experimental Applications in Therapy.- 8 Rationale and Strategies for the Therapeutic Applications of Immobilized Enzymes.- 1. Introduction.- 2. Biomedical Significance of Different Types of Immobilized Enzymes.- 3. Routes of Therapeutic Administration.- 4. Examples of Experimental Therapy.- 5. General.- 6. References.- 9 l-Asparaginase as a Model for Enzyme Therapy of Substrate-Dependent Tumors.- 1. Introduction.- 2. Historical Background.- 3. Distribution and Sources of l-Asparaginase.- 4. Some Properties of E. colil-Asparaginase EC-2 (l-Asparagine Amidohydrolase; EC 3.5.1.1).- 5. Spectrum of Sensitivity of Tumors to l-Asparaginase.- 6. Mechanism of Antitumor Action.- 7. Factors That Influence the Tumor-Inhibitory Effectiveness of l-Asparaginase.- 8. Use of l-Asparaginase in Acute Lymphocytic Leukemia Therapy.- 9. Problems Associated with l-Asparaginase Therapy.- 10. Combination Chemotherapy.- 11. Future Prospects and Perspectives.- 12. References.- 10 A Biomedical View of Enzyme Replacement Strategies in Genetic Disease.- 1. Introduction.- 2. Objective of the Campaign.- 3. Origins of Genetic Variation.- 4. Treatment Strategies.- 5. Principles and Pitfalls of Replacement Therapy.- 6. Comment.- 7. References.- 11 Experimental Therapy Using Semipermeable Microcapsules Containing Enzymes and Other Biologically Active Material.- 1. Introduction.- 2. Red Blood Cell Substitutes.- 3. Immobilized Urease as a Basic Model for Experimental Therapy in Vivo.- 4. Experimental Enzyme Replacement Therapy for Hereditary Enzyme Deficiency.- 5. l-Asparaginase for Substrate-Dependent Tumors.- 6. “One-Shot” Vaccine.- 7. Multienzyme Systems and Requirements for Cofactors.- 8. Immobilized Enzymes and Proteins for Artificial Kidney, Artificial Liver, and Detoxifier.- 9. References.- 12 Stabilized Urease Microencapsulated.- 1. Introduction.- 2. Urease Stabilization.- 3. Microencapsulation Technique.- 4. Experimental Procedure.- 5. Summary.- 6. References.- 13 Liquid-Membrane-Encapsulated Enzymes.- 1. Liquid Membrane System.- 2. Preparation of Encapsulated Enzymes.- 3. Catalytic Activity of Encapsulated Enzymes.- 4. Recovery of Enzymes and Denaturation Effects.- 5. Encapsulation of Multienzyme Systems and Whole Cells.- 6. Potential Applications.- 7. References.- 14 Liposomes as Carriers of Enzymes and Proteins in Medicine.- 1. Problems Associated with the Direct Administration of Proteins.- 2. Need for a Protein Carrier.- 3. Liposome as Carrier Candidate.- 4. Interaction of Protein-Containing Liposomes with the Biological Environment.- 5. Selective Targeting of Liposomes.- 6. Liposome-Entrapped Enzymes in the Treatment or Prevention of Disease.- 7. References.- 15 Enzyme-Loaded Erythrocytes.- 1. Introduction.- 2. Enzyme-Loaded Ghosts.- 3. Evaluation of Results.- 4. Summary.- 5. References.- 16 Enzyme Entrapment in Erythrocytes and Liposomes for the Treatment of Lysosomal Storage Diseases.- 1. Introduction.- 2. In Vivo Fate of Unentrapped Enzyme.- 3. Administration of Erythrocyte-Entrapped Enzyme.- 4. Administration of Liposome-Entrapped Enzyme.- 5. Biomedical Applications of Enzyme Entrapment: Enzyme Therapy.- 6. References.- 17 Strategy for Enzyme Therapy: Immobilization in Hypoallergenic Gel Versus Entrapment in Red Blood Cell.- 1. Gel Immobilization System.- 2. Red Blood Cell Entrapment System.- 3. Summary and Conclusions.- 4. References.- 18 Immobilized Enzymes for Therapeutic Applications and for Large-Scale Production of Biologically Active Compounds.- 1. Introduction.- 2. Therapeutic Applications.- 3. Production and Purification of Biologically Active Compounds.- 4. References.- 19 Artificial Kidney, Artificial Liver, and Detoxfiers Based on Artificial Cells, Immobilized Proteins, and Immobilized Enzymes.- 1. Introduction.- 2. Basic Principles.- 3. Use of Microencapsulated Enzymes for the Conversion of Waste Metabolites and Toxins.- 4. Immobilization of Albumin on Microencapsulated Adsorbents.- 5. Discussion.- 6. References.- 20 Removal of Bilirubin from Blood by Affinity-Competition Chromatography over Albumin-Agarose Gel.- 1. Introduction.- 2. Rationale.- 3. Preparation of Albumin-Agarose Gels.- 4. In Vitro Binding Studies.- 5. Removal of Bilirubin in Vivo.- 6. Specificity and Biocompatibility.- 7. Unresolved Problems.- 8. Future Applications.- 9. Summary.- 10. References.- 21 Membrane-Immobilized Liver Microsome Drug Detoxfier.- 1. Introduction.- 2. Preparation and Characterization of Microsomal Drug Detoxification Enzymes.- 3. Experimental Simulation of in Vivo Drug Detoxification.- 4. References.- 22 Some in Vivo and in Vitro Studies of Biologically Active Molecules on Organic Matrixes for Potential Therapeutic Applications.- 1. Introduction.- 2. Reactor Design.- 3. References.- 23 Therapeutic Perspectives of Enzyme Reactors.- 1. Introduction.- 2. Development of Enzyme Technology—Promise of Things To Come.- 3. Current Research and Future Vistas—Realization of the Potential.- 4. Collagen-Enzyme Complexes as Vehicles for Therapeutic Enzymes.- 5. Clinical Studies of Collagen-Immobilized l-Asparaginase Reactors: Reduction of Canine Serum Asparagine Levels.- 6. Conclusion.- 7. References.- 24 Possible Roles of Enzymes in Development of a Fuel Cell Power Source for the Cardiac Pacemaker.- 1. Introduction.- 2. Clinical Requirements.- 3. Energy Sources and Needs.- 4. Theory of Biofuel Cells.- 5. Pacemaker Biofuel Cell Studies.- 6. Outlook.- 7. References.- 25 The Use of Enzymes for Oxygenator Membranes.- 1. Introduction.- 2. Methods.- 3. Results and Discussion.- 4. Discussion.- 5. Conclusions.- 6. Summary.- 7. References.