1 The Structure of Solids.- 1.1 Ideal Crystal Structures.- 1.1.1 The Close-packing of Spheres.- 1.1.2 The Lattice and the Basis.- 1.1.3 The Unit Cell.- 1.1.4 Miller Indices.- 1.2 Defects in Crystalline Solids.- 1.2.1 Thermal Vibrations.- 1.2.2 Zero-dimensional (Point) Defects.- 1.2.3 One-dimensional (Line) Defects: Dislocations.- 1.2.4 Two-dimensional Defects.- 1.2.5 Three-dimensional Defects.- 1.3 Binary Phase Diagrams.- 1.3.1 Gibbs’s Phase Rule.- 1.3.2 The Lever Rule.- 1.3.3 Eutectics.- Problems.- 2 The Classical Theory of Electrical Conduction.- 2.1 Drude’s Free Electron Theory.- 2.1.1 The Drift Velocity, Mobility and Ohm’s Law.- 2.1.2 An Estimate of Mobility and Drift Velocity.- 2.1.3 The Mean Free Path.- 2.2 The Hall Effect.- 2.2.1 The Hall Probe.- 2.3 The Wiedemann-Franz Law.- 2.4 Matthiessen’s Rule.- 2.5 Electromagnetic Waves in Solids.- 2.5.1 ‘Low’ Frequencies.- 2.5.2 The Skin Depth.- 2.6 The Plasma Frequency.- 2.6.1 An Example.- 2.6.2 Plasma Oscillations: Plasmons.- 2.7 Failures of Classical Free Electron Theory.- 2.7.1 The Specific Heat of Metals.- 2.7.2 The Dependence of Electrical Conductivity on Temperature.- Problems.- 3 The Quantum Theory of Electrons in Solids.- 3.1 Schroedinger’s Equation.- 3.2 The Particle in a Potential Well.- 3.3 The Pauli Exclusion Principle.- 3.4 The Fermi Energy.- 3.5 Fermi-Dirac Statistics.- 3.6 The Specific Heat of a Free Electron Gas.- 3.7 The Penney-Kronig Model.- 3.8 Energy Bands.- 3.8.1 The Effective Mass.- 3.8.2 Brillouin Zones.- 3.8.3 The Fermi Surface.- 3.8.4 The Density of States.- 3.9 Insulators, Semiconductors and Conductors.- Problems.- 4 Charge Carriers in Semiconductors.- 4.1 Intrinsic Conduction in Semiconductors.- 4.2 Extrinsic Conduction in Semiconductors.- 4.2.1 Compensation.- 4.2.2 The Fermi Level in Extrinsic Semiconductors.- 4.3 p-n Junctions.- 4.3.1 The Einstein Relation.- 4.3.2 The Depletion Region.- 4.3.3 The Rectifier Equation.- 4.3.4 Junction Breakdown.- 4.4 The Bipolar Junction Transistor.- 4.5 The MOSFET.- 4.6 Measurement of Semiconductor Properties.- 4.6.1 Conductivity and Type.- 4.6.2 The Mobility and Lifetime.- 4.6.3 The Hall Coefficient.- 4.6.4 The Carrier Concentration.- 4.6.5 The Effective Mass.- 4.6.6 The Energy Gap.- Problems.- 5 VLSI Technology.- 5.1 A Quick Overview of the IC Production Process.- 5.2 Crystal Growth and Wafer Production.- 5.2.1 Segregation.- 5.3 Epitaxy.- 5.3.1 The Evaluation of Epitaxial Layers.- 5.4 Oxidation.- 5.5 Dielectric and Polysilicon Deposition.- 5.5.1 Dielectric Characterization.- 5.6 Diffusion.- 5.6.1 Erfc Diffusion.- 5.6.2 Gaussian Diffusion.- 5.6.3 Diffusion Profile Measurement.- 5.7 Ion Implantation.- 5.7.1 Annealing Implanted Layers.- 5.8 Lithography.- 5.9 Metallization.- 5.9.1 Contacts.- 5.9.2 Junction Spiking.- 5.9.3 Electromigration.- 5.10 Assembly and Packaging.- 5.11 Beyond Silicon.- Problems.- 6 Magnetic Phenomena.- 6.1 Magnetic Units.- 6.2 Types of Magnetic Order.- 6.3 The Hysteresis Loop.- 6.4 The Saturation Polarization.- 6.4.1 The Change in Saturation Polarization with Temperature.- 6.5 Anisotropy Energy.- 6.5.1 Magnetocrystalline Anisotropy.- 6.5.2 Shape Anisotropy.- 6.6 Magnetic Domains.- 6.6.1 Domain Walls.- 6.6.2 Single-domain Particles.- 6.6.3 Hysteresis of Single-domain Particles.- 6.7 The Maximum Energy Product.- 6.8 Hysteresis in Multi-domain Magnetic Materials.- 6.8.1 The Initial Susceptibility.- 6.8.2 The Initial Magnetization Curve.- 6.9 Magnetostriction.- Problems.- 7 Magnetic Materials and Devices.- 7.1 Soft Magnetic Materials.- 7.1.1 Transformer Core Materials.- 7.1.2 Soft Ferrites.- 7.1.3 The Production Technology of Soft Ferrites.- 7.2 Materials in Magnetic Recording.- 7.3 Magnetic Bubbles.- 7.4 Microwave Devices.- 7.4.1 The Isolator.- 7.4.2 Circulators.- Problems.- 8 Dielectrics.- 8.1 The Electric Polarization.- 8.2 The Dielectric Constant or Relative Permittivity.- 8.3 Types of Polarization.- 8.3.1 Electronic Polarization.- 8.3.2 Orientational Polarization.- 8.3.3 The Total Polarization.- 8.4 The Local Field in a Dielectric.- 8.5 The Clausius-Mossotti Relation.- 8.5.1 The Refractive Index.- 8.6 Energy Absorption in Dielectrics.- 8.6.1 Dielectric Relaxation: The Debye Equation.- 8.6.2 The Loss Tangent.- 8.6.3 An Example of Capacitor Losses.- 8.7 Dielectric Breakdown.- 8.8 Ferroelectrics.- 8.8.1 The Catastrophe Theory.- 8.8.2 Uses of Ferroelectrics.- Problems.- 9 Materials for Optoelectronics.- 9.1 Light-emitting Diodes (LEDs).- 9.1.1 LEDs for Displays.- 9.1.2 Signal LEDs.- 9.2 Solid-state Lasers.- 9.2.1 Output Characteristics of Solid-state Lasers.- 9.3 Optical Fibres.- 9.3.1 Step-index Fibres.- 9.3.2 Graded-index Fibres.- 9.3.3 Intramodal Dispersion.- 9.3.4 Attenuation in Optical Fibres.- 9.3.5 The Manufacture of Optical Fibres.- 9.4 Signal Detectors.- 9.4.1 PIN Diodes.- 9.4.2 Avalanche Photodiodes.- 9.4.3 Phototransistors.- 9.5 The Solar Cell.- 9.5.1 Choice of Material.- 9.6 Displays.- 9.6.1 The Cathode Ray Tube (CRT).- 9.6.2 Liquid Crystal Displays.- 9.7 Integrated Optics?.- 9.7.1 The Optical Switch.- Problems.- 10 Superconductors.- 10.1 The Economics of Superconductivity.- 10.2 The Phenomenology of Superconductivity.- 10.3 Characteristic Lengths.- 10.3.1 Critical Fields.- 10.4 BCS Theory.- 10.5 The Josephson Effect.- 10.6 High-temperature Ceramic Superconductors.- 10.7 Applications of Superconductivity.- Problems.- Further Reading.- Appendix: The Periodic Table of the Elements.