1 Bioscience Concepts for Environmental Control.- I. Introduction.- II. The Cell.- III. Biochemistry.- A. Important Compounds.- B. Photosynthesis.- C. Chemosynthesis.- D. Respiration.- E. Nutrition.- IV. Microbiology.- A. Bacteria.- B. Algae.- C. Protozoa.- D. Fungi.- E. Viruses.- F. Other.- V. Ecology.- A. Structure of the Ecosystem.- B. Biogeochemical Cycles.- C. Interspecies Relationships.- D. Population Dynamics.- VI. Physical and Biological Factors in Waste Treatment Ecosystems.- A. Chemical Composition of the Medium.- B. Indices of Pollution.- C. Flow Rates and Concentration.- D. Surfaces and Substrata.- E. Nutritional Shifts.- F. Biological Interactions.- G. Ecological Succession.- VII. Conclusions.- Suggested Reading.- 2 Treatment by Application Onto Land.- I. Introduction.- A. Scope.- B. Philosophy.- II. Types.- A. Surface Spreading.- B. Slow Rate.- C. Rapid Infiltration—Percolation.- D. Vegetative Cover vs Bare Ground.- E. Final Residence of Liquid.- F. Chlorination.- III. Processes.- A. Physical.- B. Physical—Chemical.- C. Chemical.- D. Biological.- E. Process Applications.- IV. Design.- A. Preliminary Studies.- B. Application Rates.- C. Distribution Facilities.- D. Monitoring.- V. Evaluation.- A. Effectiveness.- B. Applicability.- C. Cost.- D. Ease of Design for Various Conditions.- References.- 3 Treatment by Subsurface Application.- I. Introduction.- II. Theory.- A. Pretreatment in a Tank.- B. Subsurface Disposal.- III. Design.- A. General Considerations.- B. Septic Tank Design.- C. Aerobic Tank Design.- D. Conventional Tile Field.- E. Aerobic Tile Field.- F. Seepage Pit.- G. Institutional and Multiple Dwelling Systems.- H. Construction.- IV. State of the Art.- A. Tank Treatment.- B. Effluent Disposal.- C. Nutrient Removal.- V. Conclusions.- A. Cost Estimation.- B. Sample Design Problems.- References.- 4 Submerged Aeration.- I. Introduction.- II. Aeration Performance Evaluation.- A. Hydraulic Regimes of Performance Evaluation.- B. Means of Deoxygenation.- C. Oxygen Saturation Concentration.- D. Data Analysis and Interpretation.- III. Submerged Aeration Systems.- A. System Components.- B. Major Types of Submerged Aerators.- IV. Design Application.- A. Types of Design Problems.- B. Case Study Example.- Nomenclature.- References.- 5 Surface and Spray Aeration.- I. Introduction.- II. Fundamental Concepts.- A. Equilibrium.- B. Gas Solubility.- C. Molecular Diffusion.- D. Turbulent Mixing.- E. Air—Water Interface.- III. Theories of Gas Transfer.- A. Mass Transfer Equation.- B. Two-Film Theory.- C. Penetration Model.- D. Film-Penetration Model.- E. Surface Renewal—Damped Eddy Diffusion Model.- F. Turbulent Diffusion Model.- G. Other Models.- H. Comparison of Gas Transfer Coefficients.- I. Gas—Liquid Relation.- IV. Aeration Equation.- A. Significance of the Aeration Equation.- B. Influencing Factors.- C. Natural Reaeration.- V. Surface Aeration.- A. Introduction.- B. Types of Surface Aerators.- C. Techniques for Surface Aerator Performance Test.- D. Surface Aerator Design.- E. Artificial Instream Aeration.- VI. Spray Aeration.- A. Introduction.- B. Types of Spray Aerators.- C. Spray Aeration Applications.- D. Spray Aerator Design.- Nomenclature.- References.- 6 Activated Sludge Processes.- I. Concepts and Physical Behavior.- A. Definition of Process.- B. Principles of Biological Oxidation.- C. Energy Flow.- D. Synthesis and Respiration.- II. System Variables and Control.- A. Kinetics of Sludge Growth and Substrate Removal.- B. Process Variables, Interactions, and Their Significance in Process Operation and Performance.- C. Aeration Requirements.- D. Temperature Effect.- III. System Modifications and Design Criteria.- A. The Conventional Activated Sludge Process.- B. Step Aeration Process.- C. Complete Mix Process.- D. Extended Aeration Process.- E. Contact Stabilization Process.- F. Kraus Process.- G. Design Criteria.- H. Other Process.- IV. Computer Aid in Process Design and Operation.- A. Prediction of Performance.- B. Computer Program for Process Design.- C. Computer Aid in Process Operation.- V. Practice and Problems in Process Control.- A. Wasting Sludge, Feedback, and Feed Forward Control.- B. Bulking of Sludge and Rising of Sludge.- VI. Capital and Operating Cost.- A. Traditional Cost Estimates.- B. Worksheet for Cost Estimates.- C. Improvements of Cost Estimation Techniques.- VII. Latest Process Development.- A. Step Sludge Process.- B. High Rate Adsorption—Biooxidation Process.- C. The Oxygenated Activated Sludge Process.- Appendixes.- A. Notation.- B. Definition of Terms, CASSO Program.- C. Sample Worksheet for Cost Estimates.- References.- 7 Waste Stabilization Ponds and Lagoons.- I. Concept and Physical Behavior.- A. Pond Ecology and Process Reactions.- B. Biology of Stabilization Ponds.- C. Classification of Stabilization Ponds.- II. System Variables and Control.- A. Kinetics of Substrate Removal.- B. Oxygen Supply.- C. Temperature Effect.- D. Detention Time.- III. Design Criteria.- A. Design Parameters.- B. Inlet Structures.- C. Outlet Structures.- D. Transfer Pipes.- E. Berm Design.- F. Bottom Preparation.- IV. Practice and Problems in Process Control.- A. Staging of Ponds.- B. Pond Recirculation.- C. Pond Mixing and Aeration.- D. Odor Control.- E. Algal Removal.- F. Insect Control.- V. Capital and Operation Costs.- VI. Latest Process Developments.- A. Nutrient Removal and Controlled Eutrophication.- B. Integrated Pond System.- VII. Examples of Process Design.- References.- 8 Trickling Filters.- I. Introduction.- A. Process Description of Attached Growth Systems.- B. Historical Development and Applicability of Attached Growth Systems.- C. Microbiology and Ecology.- II. Theories and Mechanisms.- A. Transfer of Oxygen in Slime Layer and Liquid Film.- B. Transfer of Substrate in Liquid Film and Slime Layer.- III. Types of Trickling Filters.- A. General Description.- B. Low-Rate, High-Rate, and Super-Rate Filters.- C. Single- and Multi-Stage Trickling Filter Plants.- IV. Performance Models and Design Procedures.- A. National Research Council Models.- B. Velz Model.- C. Upper Mississippi River—Great Lakes Board Model.- D. Howland Models.- E. Eckenfelder Models.- F. Galler and Gotaas Model.- G. Biofilm Model.- H. U.S. Army Design Formulas.- I. U.S. Environmental Protection Agency Model.- V. Design and Construction Considerations.- VI. Process Control Considerations.- VII. Energy Considerations.- VIII. Application, Performance, and Reliability.- IX. Limitations and Environmental Impact.- X. Design Examples.- Nomenclature.- References.- 9 Rotating Biological Contactors.- I. Introduction.- II. Factors Affecting Performance and Design.- A. Microorganisms and Environmental Factors.- B. Media Selection and Arrangement.- C. Loadings and Hydraulic Parameters.- III. Performance Models and Design Procedures.- A. US Environmental Protection Agency Model.- B. Modified US Environmental Protection Agency Model.- C. Manufacturer’s Design Procedures.- IV. Process Control Considerations.- V. Application, Performance, and Reliability.- VI. Limitations and Environmental Impact.- VII. Design Examples.- References.- Nomenclature.- 10 Anaerobic Sludge Digestion.- I. Introduction.- II. Theory.- A. Nature of Organic Wastes.- B. Biochemistry and Microbiology of the Anaerobic.- Process.- C. Reactor Configurations.- D. Organic Loading Parameters.- E. Time and Temperature Relationships.- F. Nutrient Requirements.- G. Gas Production and Utilization.- III. Design Practice.- A. Anaerobic Treatability Studies.- B. Anaerobic Reactor Design and Sizing.- C. Tank Construction and System Components.- D. System Equipment and Appurtenances.- E. Gas Utilization.- F. Sludge Pumping and Piping Considerations.- IV. Management of Digestion.- A. Control of Sludge Feed.- B. Withdrawal of Sludge and Supernatant.- C. Maintenance of Reactor Stability.- D. Digester Performance Criteria.- V. Capital and Operating Costs.- A. General.- B. Items Included in Cost Estimates.- VI. Design Examples.- A. Example Using Standards Design.- B. Example Using Solids Loading Factor.- C. Example Using Modified Anaerobic Contact.- Nomenclature.- References.