Philosophy of Mathematics – An Introduction

An Introduction

Specificaties
Gebonden, 344 blz. | Engels
John Wiley & Sons | e druk, 2009
ISBN13: 9781405189927
Rubricering
John Wiley & Sons e druk, 2009 9781405189927
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Philosophy of Mathematics: An Introduction provides a critical analysis of the major philosophical issues and viewpoints in the concepts and methods of mathematics – from antiquity to the modern era.

Offers beginning readers a critical appraisal of philosophical viewpoints throughout history

Gives a separate chapter to predicativism, which is often (but wrongly) treated as if it were a part of logicism

Provides readers with a non–partisan discussion until the final chapter, which gives the author s personal opinion on where the truth lies

Designed to be accessible to both undergraduates and graduate students, and at the same time to be of interest to professionals

Specificaties

ISBN13:9781405189927
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:344

Inhoudsopgave

Introduction.
<p>Part I: Plato versus Aristotle:.</p>
<p>A. Plato.</p>
<p>1. The Socratic Background.</p>
<p>2. The Theory of Recollection.</p>
<p>3. Platonism in Mathematics.</p>
<p>4. Retractions: the Divided Line in Republic VI (509d 511e).</p>
<p>B. Aristotle.</p>
<p>5. The Overall Position.</p>
<p>6. Idealizations.</p>
<p>7. Complications.</p>
<p>8. Problems with Infinity.</p>
<p>C. Prospects.</p>
<p>Part II: From Aristotle to Kant:.</p>
<p>1. Medieval Times.</p>
<p>2. Descartes.</p>
<p>3. Locke, Berkeley, Hume.</p>
<p>4. A Remark on Conceptualism.</p>
<p>5. Kant: the Problem.</p>
<p>6. Kant: the Solution.</p>
<p>Part III: Reactions to Kant:.</p>
<p>1. Mill on Geometry.</p>
<p>2. Mill versus Frege on Arithmetic.</p>
<p>3. Analytic Truths.</p>
<p>4. Concluding Remarks.</p>
<p>Part IV: Mathematics and its Foundations:.</p>
<p>1. Geometry.</p>
<p>2. Different Kinds of Number.</p>
<p>3. The Calculus.</p>
<p>4. Return to Foundations.</p>
<p>5. Infinite Numbers.</p>
<p>6. Foundations Again.</p>
<p>Part V: Logicism:.</p>
<p>1. Frege.</p>
<p>2. Russell.</p>
<p>3. Borkowski/Bostock.</p>
<p>4. Set Theory.</p>
<p>5. Logic.</p>
<p>6. Definition.</p>
<p>Part VI: Formalism:.</p>
<p>1. Hilbert.</p>
<p>2. G&ouml;del.</p>
<p>3. Pure Formalism.</p>
<p>4. Structuralism.</p>
<p>5. Some Comments.</p>
<p>Part VII: Intuitionism:.</p>
<p>1. Brouwer.</p>
<p>2. Intuitionist Logic.</p>
<p>3. The Irrelevance of Ontology.</p>
<p>4. The Attack on Classical Logic.</p>
<p>Part VIII: Predicativism:.</p>
<p>1. Russell and the VCP.</p>
<p>2. Russell s Ramified Theory and the Axiom of Reducibility.</p>
<p>3. Predicative Theories after Russell.</p>
<p>4. Concluding Remarks.</p>
<p>Part IX: Realism versus Nominalism:.</p>
<p>A. Realism.</p>
<p>1. G&ouml;del.</p>
<p>2. Neo–Fregeans.</p>
<p>3. Quine and Putnam.</p>
<p>B. Nominalism.</p>
<p>4. Reductive Nominalism.</p>
<p>5. Fictionalism.</p>
<p>6. Concluding Remarks.</p>
<p>References.</p>
<p>Index</p>

Rubrieken

    Personen

      Trefwoorden

        Philosophy of Mathematics – An Introduction