Earthquake Engineering: Theory and Implementation with the 2015 International Building Code, Third Edition

Specificaties
Gebonden, blz. | Engels
McGraw-Hill Education | 3e druk, 2015
ISBN13: 9781259587122
Rubricering
McGraw-Hill Education 3e druk, 2015 9781259587122
Verwachte levertijd ongeveer 11 werkdagen

Samenvatting

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.
Fully updated coverage of earthquake-resistant engineering techniques, regulations, and codes

This thoroughly revised resource offers cost-effective earthquake engineering methods and practical instruction on underlying structural dynamics concepts. Earthquake Engineering, Third Edition, teaches how to analyze the behavior of structures under seismic excitation and features up-to-date details on the design and construction of earthquake-resistant steel and reinforced concrete buildings, bridges, and isolated systems. All applicable requirements are fully explained—including the 2015 International Building Code and the latest ACI, AISC, and AASHTO codes and regulations. Advanced chapters cover seismic isolation, synthetic earthquakes, foundation design, and geotechnical aspects such as liquefaction.Earthquake Engineering, Third Edition, covers:Characteristics of earthquakesLinear elastic dynamic analysisNonlinear and inelastic dynamic analysisBehavior of structures under seismic excitationDesign of earthquake-resistant buildings (IBC)Seismic provisions of reinforced concrete structures (ACI code)Introduction to seismic provisions of steel structures (AISC code)Design of earthquake-resistant bridges (AASHTO code)Geotechnical aspects and foundationsSynthetic earthquakesIntroduction to seismic isolation

Specificaties

ISBN13:9781259587122
Taal:Engels
Bindwijze:gebonden
Druk:3

Inhoudsopgave

1 Introduction<br/>2 Characteristics of Earthquakes<br/>2.1 Causes of Earthquakes<br/>2.2 Plate Tectonic Theory<br/>2.3 Measures of Earthquakes<br/>2.3.1 Magnitude<br/>2.3.2 Intensity<br/>2.3.3 Instrumental Scale<br/>2.3.4 Fourier Amplitude Spectrum<br/>2.3.5 Power Spectral Density<br/>2.3.6 Response Spectrum<br/>3 Linear Elastic Dynamic Analysis<br/>3.1 Introduction<br/>3.2 Single Degree of Freedom System<br/>3.2.1 System Formulation<br/>3.2.2 Response Spectrum of Elastic Systems<br/>3.2.3 Design Response Spectrum<br/>3.3 Generalized Single Degree of Freedom<br/>3.4 Multiple Degrees of Freedom System<br/>3.4.1 Multiple Degrees of Freedom System in 2D Analysis<br/>Modal Analysis<br/>Orthogonality of Mode Shapes<br/>Caution<br/>Importance of Modes<br/>3.4.2 Multiple Degrees of Freedom System in 3D Analysis<br/>Combination Effect of Different Ground Motions<br/>3.4.3 Mass Participation in Buildings<br/>3.5 Shear Beam<br/>3.6 Cantilever Flexure Beam<br/>Comparison between Shear Beam and Cantilever Flexure Beam<br/>3.7 Simple Flexure Beam<br/>3.8 Axial Beam<br/>3.9 Finite Element Method<br/>3.9.1 Finite Element Concept in Structural Engineering<br/>3.9.2 Stiffness Matrix (Virtual Work Approach)<br/>3.9.3 Mass Matrix (Virtual Work Approach)<br/>3.9.4 Stiffness and Mass Matrices (Galerkin Approach)<br/>3.9.5 Other Matrices<br/>3.9.6 Mass Matrix in 2D<br/>3.9.7 Application of Consistent Mass Matrix<br/>3.10 Incoherence<br/>3.11 Problems<br/>4 Nonlinear and Inelastic Dynamic Analysis<br/>4.1 Introduction<br/>4.2 Single Degree of Freedom System<br/>4.3 Numerical Methods<br/>4.3.1 Central Differences Method<br/>4.3.2 Newmark-β Methods<br/>4.3.3 Wilson-θ Method<br/>4.4 Multiple Degrees of Freedom System<br/>4.5 Equivalent Linearization<br/>4.6 Problems<br/>5 Behavior of Structures under Seismic Excitation<br/>5.1 Introduction<br/>5.1.1 Force-Reduction Factor, R<br/>5.1.2 Ductility<br/>5.1.3 Energy Dissipation Capacity<br/>5.1.4 Self-Centering Capacity<br/>5.1.5 Frequency Shift<br/>General Note<br/>5.2 Relationship between Force Reduction and Ductility Demand<br/>5.2.1 Equal Displacement Criterion<br/>5.2.2 Equal Energy Criterion<br/>5.2.3 General Relationship between R and μd<br/>5.3 Relationship between Global Ductility and Local Ductility<br/>5.4 Local Ductility Capacity<br/>5.5 Evaluation of Monotonic Local Ductility Capacity<br/>5.5.1 Monotonic Behavior of Concrete<br/>5.5.2 Monotonic Behavior of Steel<br/>5.5.3 Idealized Strain Compatibility Analysis<br/>Curvature at First Yield<br/>Curvature at Ultimate State<br/>5.5.4 General Strain Compatibility Analysis<br/>5.6 Evaluation of Cyclic Local Ductility Capacity<br/>5.6.1 Cyclic Behavior of Concrete<br/>5.6.2 Cyclic Behavior of Steel<br/>5.6.3 Cyclic Strain Compatibility Analysis<br/>5.7 Precast Concrete Structures<br/>5.8 Effect of Structure Configuration on Ductility<br/>5.9 Second-Order Effect on Ductility<br/>5.10 Undesirable Hysteretic Behavior<br/>Undesirable Hysteretic Behavior Due to Material Deterioration<br/>Undesirable Hysteretic Behavior Due to Unfavorable Structural Configuration<br/>5.11 Effect of Axial Load on Hysteretic Behavior<br/>5.11.1 Rigid Bar Idealization<br/>Case 1: Rigid Bar under Axial Load and without Springs<br/>Case 2: Rigid Bar with Springs and without Axial Load<br/>Case 3: Rigid Bar with Springs and under Axial Load<br/>5.11.2 Energy Dissipation Factor (αN)<br/>5.12 Design Considerations<br/>5.13 Capacity Design<br/>5.14 Pushover Analysis<br/>5.15 Recommended versus Undesirable Structural Systems<br/>5.16 Strain Rate<br/>5.17 Problems<br/>6 Design of Earthquake-Resistant Buildings (IBC)<br/>6.1 Introduction<br/>6.2 Definition of Structural Components<br/>6.2.1 Seismic Base<br/>6.3 Seismic Design Category<br/>6.4 Zoning Classification<br/>6.5 Response Spectra<br/>6.6 Design Requirements of Seismic Design Categories<br/>Seismic Design Category A<br/>Seismic Design Category B and C<br/>Seismic Design Category D, E, and F<br/>6.7 Earthquake-Induced Forces<br/>6.7.1 Regularity of Structures<br/>Horizontal Types of Irregularity<br/>Vertical Types of Irregularity<br/>6.7.2 Simplified Lateral Force Analysis Procedure<br/>Vertical Distribution of Base Shear<br/>6.7.3 Equivalent Lateral Force Procedure<br/>Vertical Distribution of Base Shear<br/>6.7.4 Modal Response Spectrum Analysis<br/>6.7.5 Two-Stage Analysis Procedures<br/>6.7.6 Time-History Analysis<br/>6.7.7 Directional Effect<br/>Redundancy Factor (ρ)<br/>6.8 Load Combinations<br/>6.9 Definitions and Requirements of Structural Systems<br/>6.10 Special Topics<br/>6.10.1 Diaphragm Design Forces<br/>6.10.2 Torsional Effect<br/>6.10.3 Drift Limitations<br/>6.10.4 Structural Separation<br/>6.10.5 P-Δ Effect<br/>6.11 Problems<br/>APPENDIX 6-1<br/>7 Seismic Provisions of Reinforced Concrete Structures (ACI 318)<br/>7.1 Introduction<br/>7.2 Ordinary Moment Frames<br/>7.2.1 Ordinary Beams<br/>Main Reinforcement<br/>Development of Reinforcement<br/>Shear Reinforcement<br/>7.2.2 Ordinary Beam-Columns<br/>Main Reinforcement<br/>Development of Reinforcement<br/>Shear Reinforcement<br/>7.3 Intermediate Moment Frames<br/>7.3.1 Intermediate Beams<br/>Main Reinforcement<br/>Lateral Reinforcement<br/>7.3.2 Intermediate Beam-Columns<br/>Lateral Reinforcement<br/>7.4 Special Moment Frames<br/>7.4.1 Special Beams<br/>Design Shear, Ve<br/>Dimension Limitations<br/>Main Reinforcement<br/>Lateral Reinforcement<br/>7.4.2 Special Beam-Columns<br/>Design Forces<br/>Dimension Limitations<br/>Main Reinforcement<br/>Lateral Reinforcement Details<br/>Minimum Lateral Reinforcement<br/>Concrete Cover Protection<br/>7.4.3 Special Joints<br/>Development of Reinforcement<br/>Confined Concrete<br/>7.5 Ordinary Shear Walls<br/>Force Requirements<br/>Reinforcement Requirements<br/>7.6 Special Shear Walls<br/>7.6.1 Special Shear Walls without Openings<br/>Force Requirements<br/>Reinforcement Requirements<br/>Boundary Element Requirements<br/>Detailing of Boundary Elements<br/>7.6.2 Special Shear Walls with Openings<br/>7.7 Coupling Beams<br/>7.7.1 Detailing of Coupling Beams with Diagonals<br/>Diagonals<br/>Coupling Beams<br/>7.8 Diaphragms and Trusses<br/>7.8.1 Structural System<br/>7.8.2 Shear Strength<br/>7.8.3 Diaphragm Chords and Truss Members<br/>7.9 Foundations<br/>7.9.1 Strength Requirements<br/>7.9.2 Detailing Requirements<br/>7.10 Precast Concrete<br/>7.10.1 Precast Special Moment Frames<br/>Precast Special Frames with Ductile Connections<br/>Precast Special Frames with Strong Connections<br/>7.10.2 Precast Intermediate Shear Walls<br/>7.10.3 Precast Special Shear Walls<br/>7.11 Nonseismic-Resisting Systems<br/>7.11.1 General Requirements (A)<br/>Beam Requirements<br/>Beam-Column Requirements<br/>7.11.2 General Requirements (B)<br/>Rectangular Sections<br/>Circular and Spiral Sections<br/>APPENDIX 7-1<br/>8 Introduction to AISC Seismic Provisions for Structural Steel Buildings<br/>8.1 Introduction<br/>8.2 General Requirements<br/>Load Combinations<br/>Material<br/>Demand Critical Welds<br/>Slenderness Requirements<br/>Special Bracing at Plastic Hinge Locations<br/>Protected Zones<br/>Column Splices<br/>8.3 Structural Systems<br/>8.3.1 Ordinary Moment Frames<br/>FR Moment Connections<br/>Demand Critical Welds Regions<br/>8.3.2 Intermediate Moment Frames<br/>Slenderness of Beams<br/>Protected Zones<br/>Beam-to-Column Connections<br/>Demand Critical Welds Regions<br/>8.3.3 Special Moment Frames<br/>Column-Beam Moment Ratios<br/>Slenderness of Beams<br/>Protected Zones<br/>Beam-to-Column Connections<br/>Lateral Support of Column Flanges<br/>Demand Critical Welds Regions<br/>8.3.4 Special Truss Moment Frames<br/>Dimension Limitations<br/>Special Segments<br/>Slenderness of Special Segments<br/>Protected Zones<br/>Bracing of Trusses<br/>Demand Critical Welds Regions<br/>8.3.5 Ordinary Cantilever Column Systems<br/>Demand Critical Welds Regions<br/>8.3.6 Special Cantilever Column Systems<br/>Slenderness of Columns<br/>Protected Zones<br/>Base Plate<br/>Demand Critical Welds Regions<br/>8.3.7 Ordinary Concentrically Braced Frames<br/>Slenderness of Columns<br/>V-braced and Inverted V-braced Frames<br/>Diagonal Brace Connections<br/>Demand Critical Welds Regions<br/>8.3.8 Special Concentrically Braced Frames<br/>Slenderness of Columns<br/>Protected Zones<br/>Strength Requirements<br/>Beam-to-Column Connections<br/>Brace Connections<br/>Diagonal Braces<br/>V- and Inverted V-Type Braces<br/>Demand Critical Welds Regions<br/>8.3.9 Eccentrically Braced Frames<br/>Strength Requirements<br/>Slenderness Requirements<br/>Protected Zones<br/>Beam-to-Column Connections<br/>General Link Requirements<br/>Demand Critical Welds Regions<br/>8.3.10 Buckling-Restrained Braced Frames<br/>8.3.11 Special Plate Shear Walls (SPSW)<br/>Strength Requirements<br/>Slenderness Requirements<br/>Protected Zones<br/>Demand Critical Welds Regions<br/>8.4 Allowable Stress Design Approach<br/>APPENDIX 8-1<br/>9 Design of Earthquake-Resistant Bridges (AASHTO Code)<br/>9.1 Introduction<br/>9.2 AASHTO Procedures for Bridge Design<br/>9.3 Response Spectra<br/>9.4 Single Span Bridges<br/>9.5 Bridges in Seismic Zone 1<br/>9.6 Bridges in Seismic Zone 2<br/>9.7 Bridges in Seismic Zones 3 and 4<br/>9.8 Methods of Analysis<br/>9.8.1 Uniform Load Method<br/>Continuous Bridges<br/>Discontinuous Bridges<br/>9.8.2 Single-Mode Spectral Method<br/>Continuous Bridges<br/>Sinusoidal Method for Continuous Bridges<br/>Discontinuous Bridges<br/>Rigid Deck Method for Discontinuous Bridges<br/>9.8.3 Multiple Mode Spectral Method<br/>9.8.4 Time-History Method<br/>9.8.5 Directional Effect<br/>9.9 Load Combinations<br/>9.10 Design Requirements<br/>9.11 Design Requirements of Reinforced Concrete Beam-Columns<br/>9.11.1 Bridges in Seismic Zone 1<br/>9.11.2 Bridges in Seismic Zone 2<br/>9.11.3 Bridges in Seismic Zones 3 and 4<br/>Detailing of Transverse Reinforcement<br/>9.12 Design Requirements of Reinforced Concrete Pier Walls<br/>9.13 Special Topics<br/>9.13.1 P-Δ Requirements<br/>9.1
3.2 Displacement Requirements (Seismic Seats)<br/>9.13.3 Longitudinal Restrainers<br/>9.13.4 Hold-Down Devices<br/>9.13.5 Liquefaction<br/>APPENDIX 9-1<br/>10 Geotechnical Aspects and Foundations<br/>10.1 Introduction<br/>10.2 Wave Propagation<br/>10.3 Ground Response<br/>10.4 Liquefaction<br/>Equivalent Uniform Cyclic Shear Stress Method<br/>10.5 Slope Stability<br/>10.6 Lateral Earth Pressure<br/>10.7 Foundations<br/>APPENDIX 10-1<br/>11 Synthetic Earthquakes<br/>11.1 Introduction<br/>11.2 Fourier Transform<br/>11.3 Power Spectral Density<br/>11.4 Stationary Random Processes<br/>11.5 Random Ground Motion Model<br/>11.6 Implementation of Ground Motion Model<br/>11.7 Validity of Synthetic Earthquakes<br/>12 Seismic Isolation<br/>12.1 Introduction<br/>12.2 Concept of Seismic Isolation<br/>12.3 Lead-Rubber Bearing Isolators<br/>12.4 Analysis of Seismically Isolated Structures<br/>12.5 Design of Seismically Isolated Structures<br/>Allowable Compressive Stress<br/>Allowable Shear Deformation (Shear Strain)<br/>Allowable Rotation<br/>Stability Requirements<br/>Lead Core Dimensions<br/>Shear Stiffness<br/>APPENDIX 12-1<br/>Bibliography<br/>Index

Rubrieken

    Personen

      Trefwoorden

        Earthquake Engineering: Theory and Implementation with the 2015 International Building Code, Third Edition