Hybrid Nanomaterials – Advances in Energy, Environment, and Polymer Nanocomposites
Advances in Energy, Environment, and Polymer Nanocomposites
Specificaties
Inhoudsopgave
<p>1 Hybrid Nanostructured Materials for Advanced Lithium Batteries 1<br />Soumyadip Choudhury and Manfred Stamm</p>
<p>1.1 Introduction 1</p>
<p>1.2 Battery Requirements 4</p>
<p>1.3 Survey of Rechargeable Batteries 7</p>
<p>1.4 Advanced Materials for Electrodes 9</p>
<p>1.5 Future Battery Strategies 38</p>
<p>1.6 Limitations of Existing Strategies 59</p>
<p>1.7 Conclusions 62</p>
<p>Acknowledgments 63</p>
<p>References 63</p>
<p>2 High Performing Hybrid Nanomaterials for Supercapacitor Applications 79<br />Sanjit Saha, Milan Jana and Tapas Kuila</p>
<p>2.1 Introduction 80</p>
<p>2.2 Scope of the Chapter 82</p>
<p>2.3 Characterization of Hybrid Nanomaterials 82</p>
<p>2.4 Hybrid Nanomaterials as Electrodes for Supercapacitor 91</p>
<p>2.5 Applications of Supercapacitor 130</p>
<p>2.6 Conclusions 134</p>
<p>References 135</p>
<p>3 Nanohybrid Materials in the Development of Solar Energy Applications 147<br />Poulomi Roy</p>
<p>3.1 Introduction 147</p>
<p>3.2 Significance of Nanohybrid Materials 148</p>
<p>3.3 Synthetic Strategies 162</p>
<p>3.4 Application in Solar Energy Conversion 167</p>
<p>3.5 Summary 175</p>
<p>References 176</p>
<p>4 Hybrid Nanoadsorbents for Drinking Water Treatment: A Critical Review 199<br />Ashok K. Gupta, Partha S. Ghosal and Brajesh K. Dubey</p>
<p>4.1 Introduction 199</p>
<p>4.2 Status and Health Effects of Different Pollutants 201</p>
<p>4.3 Removal Technologies 203</p>
<p>4.4 Hybrid Nanoadsorbent 208</p>
<p>4.5 Issues and Challenges 217</p>
<p>4.6 Conclusions 224</p>
<p>References 225</p>
<p>5 Advanced Nanostructured Materials in Electromagnetic Interference Shielding 241<br />Suneel Kumar Srivastava and Vikas Mittal</p>
<p>5.1 Introduction 241</p>
<p>5.2 Theoretical Aspect of EMI Shielding 243</p>
<p>5.3 Experimental Methods in Measuring Shielding Effectiveness 247</p>
<p>5.4 Carbon Allotrope–Based Polymer Nanocomposites 248</p>
<p>Fillers–Based Polymer Nanocomposites 265</p>
<p>5.5 Intrinsically Conducting Polymer (ICP) Derived Nanocomposites 276</p>
<p>5.6 Summary 300</p>
<p>6 Preparation, Properties and the Application of Hybrid Nanomaterials in Sensing Environmental Pollutants 321<br />R. Ajay Rakkesh, D. Durgalakshmi and S. Balakumar</p>
<p>6.1 Introduction 321</p>
<p>6.2 Hybrid Nanomaterials: Smart Material for Sensing Environmental Pollutants 323</p>
<p>6.3 Synthesis Methods of Hybrid Nanomaterials 326</p>
<p>6.4 Basic Mechanism of Gas Sensors Using Hybrid Nanomaterials 330</p>
<p>6.5 Hybrid Nanomaterials–Based Conductometric Gas Sensors for Environmental Monitoring 331</p>
<p>6.6 Conclusion 342</p>
<p>References 342</p>
<p>7 Development of Hybrid Fillers/Polymer Nanocomposites for Electronic Applications 349<br />Mariatti Jaafar</p>
<p>7.1 Introduction 350</p>
<p>7.2 Factors Influencing the Properties of Filler/Polymer Composite 353</p>
<p>7.3 Hybridization of Fillers in Polymer Composites 355</p>
<p>7.4 Hybrid Fillers in Polymer Nanocomposites 358</p>
<p>7.5 Fabrication Methods of Hybrid Fillers/Polymer Composites 362</p>
<p>7.6 Applications of Hybrid Fillers/Polymer Composites 365</p>
<p>References 366</p>
<p>8 High Performance Hybrid Filler Reinforced Epoxy Nanocomposites 371<br />Suman Chhetri, Tapas Kuila and Suneel Kumar Srivastava</p>
<p>8.1 Introduction 372</p>
<p>8.2 Reinforcing Fillers 373</p>
<p>8.3 Necessity of Hybrid Filler Systems 376</p>
<p>8.4 Epoxy Resin 379</p>
<p>8.5 Preparation of Hybrid Filler/Epoxy Nanocomposites 380</p>
<p>8.6 Characterization of Hybrid Filler/Epoxy Polymer Composites 381</p>
<p>8.7 Properties of the Hybrid Filler/Epoxy Nanocomposites 383</p>
<p>8.8 Summary and Future Prospect 408</p>
<p>References 413</p>
<p>9 Recent Developments in Elastomer/Hybrid Filler Nanocomposites 423<br />Suneel Kumar Srivastava and Vikas Mittal</p>
<p>9.1 Introduction 423</p>
<p>9.2 Preparation Methods of Elastomer Nanocomposites 426</p>
<p>9.3 Hybrid Fillers in Elastomer Nanocomposites 427 9.4 Mechanical Properties of Hybrid Filler Incorporated Elastomer Nanocomposites 440</p>
<p>9.5 Dynamical Mechanical Thermal Analysis (DMA) of Elastomer Nanocomposites 452</p>
<p>9.6 Thermogravimetric Analysis (TGA) of Hybrid Filler Incorporated Elastomer Nanocomposites 464</p>
<p>9.7 Differential Scanning Calorimetric (DSC) Analysis of Hybrid Filler Incorporated Elastomer Nanocomposites 468</p>
<p>9.8 Electrical Conductivity of Hybrid Filler Incorporated Elastomer Nanocomposites 476</p>
<p>9.9 Thermal Conductivity of Hybrid Filler Incorporated Elastomer Nanocomposites 477</p>
<p>9.10 Dielectric Properties of Hybrid Filler Incorporated Elastomer Nanocomposits 477</p>
<p>9.11 Shape Memory Property of Hybrid Filler Incorporated Elastomer Nanocomposites 478</p>
<p>9.12 Summary 478</p>
<p>Acknowledgment 479</p>
<p>References 479</p>
<p> </p>