,

Statistical Tools for the Comprehensive Practice of Industrial Hygiene and Environmental Health Sciences

Specificaties
Gebonden, 400 blz. | Engels
John Wiley & Sons | e druk, 2017
ISBN13: 9781119143017
Rubricering
John Wiley & Sons e druk, 2017 9781119143017
Verwachte levertijd ongeveer 16 werkdagen

Samenvatting

Reviews and reinforces concepts and techniques typical of a first statistics course with additional techniques useful to the IH/EHS practitioner.

Includes both parametric and non–parametric techniques described and illustrated in a worker health and environmental protection practice context
Illustrated through numerous examples presented in the context of IH/EHS field practice and research, using the statistical analysis tools available in Excel® wherever possible
Emphasizes the application of statistical tools to IH/EHS–type data in order to answer IH/EHS–relevant questions
Includes an instructor s manual that follows in parallel with the textbook, including PowerPoints to help prepare lectures and answers in the text as for the Exercises section of each chapter.

Specificaties

ISBN13:9781119143017
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:400

Inhoudsopgave

<p>Preface xv</p>
<p>Acknowledgments xvii</p>
<p>About the Author xix</p>
<p>About the Companion Website xxi</p>
<p>1 Some Basic Concepts 1</p>
<p>1.1 Introduction 1</p>
<p>1.2 Physical versus Statistical Sampling 2</p>
<p>1.3 Representative Measures 3</p>
<p>1.4 Strategies for Representative Sampling 3</p>
<p>1.5 Measurement Precision 4</p>
<p>1.6 Probability Concepts 6</p>
<p>1.6.1 The Relative Frequency Approach 7</p>
<p>1.6.2 The Classical Approach Probability Based on Deductive Reasoning 7</p>
<p>1.6.3 Subjective Probability 7</p>
<p>1.6.4 Complement of a Probability 7</p>
<p>1.6.5 Mutually Exclusive Events 8</p>
<p>1.6.6 Independent Events 8</p>
<p>1.6.7 Events that Are Not Mutually Exclusive 9</p>
<p>1.6.8 Marginal and Conditional Probabilities 9</p>
<p>1.6.9 Testing for Independence 11</p>
<p>1.7 Permutations and Combinations 12</p>
<p>1.7.1 Permutations for Sampling without Replacement 12</p>
<p>1.7.2 Permutations for Sampling with Replacement 13</p>
<p>1.7.3 Combinations 13</p>
<p>1.8 Introduction to Frequency Distributions 14</p>
<p>1.8.1 The Binomial Distribution 14</p>
<p>1.8.2 The Normal Distribution 16</p>
<p>1.8.3 The Chi–Square Distribution 20</p>
<p>1.9 Confidence Intervals and Hypothesis Testing 22</p>
<p>1.10 Summary 23</p>
<p>1.11 Addendum: Glossary of Some Useful Excel Functions 23</p>
<p>References 28</p>
<p>2 Descriptive Statistics and Methods of Presenting Data 29</p>
<p>2.1 Introduction 29</p>
<p>2.2 Quantitative Descriptors of Data and Data Distributions 29</p>
<p>2.3 Displaying Data with Frequency Tables 33</p>
<p>2.4 Displaying Data with Histograms and Frequency Polygons 34</p>
<p>2.5 Displaying Data Frequency Distributions with Cumulative Probability Plots 35</p>
<p>2.6 Displaying Data with NED and Q Q Plots 38</p>
<p>2.7 Displaying Data with Box–and–Whisker Plots 41</p>
<p>2.8 Data Transformations to Achieve Normality 42</p>
<p>2.9 Identifying Outliers 43</p>
<p>2.10 What to Do with Censored Values? 45</p>
<p>2.11 Summary 45</p>
<p>References 48</p>
<p>3 Analysis of Frequency Data 49</p>
<p>3.1 Introduction 49</p>
<p>3.2 Tests for Association and Goodness–of–Fit 50</p>
<p>3.2.1 r &times; c Contingency Tables and the Chi–Square Test 50</p>
<p>3.2.2 Fisher s Exact Test 54</p>
<p>3.3 Binomial Proportions 55</p>
<p>3.4 Rare Events and the Poisson Distribution 57</p>
<p>3.4.1 Poisson Probabilities 57</p>
<p>3.4.2 Confidence Interval on a Poisson Count 60</p>
<p>3.4.3 Testing for Fit with the Poisson Distribution 61</p>
<p>3.4.4 Comparing Two Poisson Rates 62</p>
<p>3.4.5 Type I Error, Type II Error, and Power 64</p>
<p>3.4.6 Power and Sample Size in Comparing Two Poisson Rates 64</p>
<p>3.5 Summary 65</p>
<p>References 69</p>
<p>4 Comparing Two Conditions 71</p>
<p>4.1 Introduction 71</p>
<p>4.2 Standard Error of the Mean 71</p>
<p>4.3 Confidence Interval on a Mean 72</p>
<p>4.4 The t–Distribution 73</p>
<p>4.5 Parametric One–Sample Test Student s t–Test 74</p>
<p>4.6 Two–Tailed versus One–Tailed Hypothesis Tests 76</p>
<p>4.7 Confidence Interval on a Variance 77</p>
<p>4.8 Other Applications of the Confidence Interval Concept in IH/EHS Work 79</p>
<p>4.8.1 OSHA Compliance Determinations 79</p>
<p>4.8.2 Laboratory Analyses LOB, LOD, and LOQ 80</p>
<p>4.9 Precision, Power, and Sample Size for One Mean 81</p>
<p>4.9.1 Sample Size Required to Estimate a Mean with a Stated Precision 81</p>
<p>4.9.2 Sample Size Required to Detect a Specified Difference in Student s t–Test 81</p>
<p>4.10 Iterative Solutions Using the Excel Goal Seek Utility 82</p>
<p>4.11 Parametric Two–Sample Tests 83</p>
<p>4.11.1 Confidence Interval for a Difference in Means: The Two–Sample t–Test 83</p>
<p>4.11.2 Two–Sample t–Test When Variances Are Equal 84</p>
<p>4.11.3 Verifying the Assumptions of the Two–Sample t–Test 85</p>
<p>4.11.3.1 Lilliefors Test for Normality 86</p>
<p>4.11.3.2 Shapiro Wilk W–Test for Normality 87</p>
<p>4.11.3.3 Testing for Homogeneity of Variance 91</p>
<p>4.11.3.4 Transformations to Stabilize Variance 93</p>
<p>4.11.4 Two–Sample t–Test with Unequal Variances Welch s Test 93</p>
<p>4.11.5 Paired Sample t–Test 95</p>
<p>4.11.6 Precision, Power, and Sample Size for Comparing Two Means 96</p>
<p>4.12 Testing for Difference in Two Binomial Proportions 99</p>
<p>4.12.1 Testing a Binomial Proportion for Difference from a Known Value 100</p>
<p>4.12.2 Testing Two Binomial Proportions for Difference 100</p>
<p>4.13 Nonparametric Two–Sample Tests 102</p>
<p>4.13.1 Mann Whitney U Test 102</p>
<p>4.13.2 Wilcoxon Matched Pairs Test 104</p>
<p>4.13.3 McNemar and Binomial Tests for Paired Nominal Data 105</p>
<p>4.14 Summary 107</p>
<p>References 111</p>
<p>5 Characterizing the Upper Tail of the Exposure Distribution 113</p>
<p>5.1 Introduction 113</p>
<p>5.2 Upper Tolerance Limits 113</p>
<p>5.3 Exceedance Fractions 115</p>
<p>5.4 Distribution Free Tolerance Limits 117</p>
<p>5.5 Summary 119</p>
<p>References 121</p>
<p>6 One–Way Analysis of Variance 123</p>
<p>6.1 Introduction 123</p>
<p>6.2 Parametric One–Way ANOVA 123</p>
<p>6.2.1 How the Parametric ANOVA Works Sums of Squares and the F–Test 124</p>
<p>6.2.2 Post hoc Multiple Pairwise Comparisons in Parametric ANOVA 127</p>
<p>6.2.2.1 Tukey s Test 127</p>
<p>6.2.2.2 Tukey Kramer Test 128</p>
<p>6.2.2.3 Dunnett s Test for Comparing Means to a Control Mean 130</p>
<p>6.2.2.4 Planned Contrasts Using the Scheff&eacute; S Test 132</p>
<p>6.2.3 Checking the ANOVA Model Assumptions NED Plots and Variance Tests 134</p>
<p>6.2.3.1 Levene s Test 134</p>
<p>6.2.3.2 Bartlett s Test 135</p>
<p>6.3 Nonparametric Analysis of Variance 136</p>
<p>6.3.1 Kruskal Wallis Nonparametric One–Way ANOVA 137</p>
<p>6.3.2 Post hoc Multiple Pairwise Comparisons in Nonparametric ANOVA 139</p>
<p>6.3.2.1 Nemenyi s Test 139</p>
<p>6.3.2.2 Bonferroni Dunn Test 140</p>
<p>6.4 ANOVA Disconnects 142</p>
<p>6.5 Summary 144</p>
<p>References 149</p>
<p>7 Two–Way Analysis of Variance 151</p>
<p>7.1 Introduction 151</p>
<p>7.2 Parametric Two–Way ANOVA 151</p>
<p>7.2.1 Two–Way ANOVA without Interaction 154</p>
<p>7.2.2 Checking for Homogeneity of Variance 154</p>
<p>7.2.3 Multiple Pairwise Comparisons When There Is No Interaction Term 154</p>
<p>7.2.4 Two–Way ANOVA with Interaction 156</p>
<p>7.2.5 Multiple Pairwise Comparisons with Interaction 158</p>
<p>7.2.6 Two–Way ANOVA without Replication 160</p>
<p>7.2.7 Repeated–Measures ANOVA 160</p>
<p>7.2.8 Two–Way ANOVA with Unequal Sample Sizes 162</p>
<p>7.3 Nonparametric Two–Way ANOVA 162</p>
<p>7.3.1 Rank Tests 162</p>
<p>7.3.1.1 The Rank Test 162</p>
<p>7.3.1.2 The Rank Transform Test 166</p>
<p>7.3.1.3 Other Options Aligned Rank Tests 166</p>
<p>7.3.2 Repeated–Measures Nonparametric ANOVA Friedman s Test 166</p>
<p>7.3.2.1 Friedman s Test without Replication 167</p>
<p>7.3.2.2 Multiple Comparisons for Friedman s Test without Replication 169</p>
<p>7.3.2.3 Friedman s Test with Replication 170</p>
<p>7.3.2.4 Multiple Comparisons for Friedman s Test with Replication 172</p>
<p>7.4 More Powerful Non–ANOVA Approaches: Linear Modeling 172</p>
<p>7.5 Summary 172</p>
<p>References 178</p>
<p>8 Correlation Analysis 181</p>
<p>8.1 Introduction 181</p>
<p>8.2 Simple Parametric Correlation Analysis 181</p>
<p>8.2.1 Testing the Correlation Coefficient for Significance 184</p>
<p>8.2.1.1 t–Test for Significance 185</p>
<p>8.2.1.2 F–Test for Significance 186</p>
<p>8.2.2 Confidence Limits on the Correlation Coefficient 186</p>
<p>8.2.3 Power in Simple Correlation Analysis 187</p>
<p>8.2.4 Comparing Two Correlation Coefficients for Difference 188</p>
<p>8.2.5 Comparing More Than Two Correlation Coefficients for Difference 189</p>
<p>8.2.6 Multiple Pairwise Comparisons of Correlation Coefficients 190</p>
<p>8.3 Simple Nonparametric Correlation Analysis 190</p>
<p>8.3.1 Spearman Rank Correlation Coefficient 190</p>
<p>8.3.2 Testing Spearman s Rank Correlation Coefficient for Statistical Significance 191</p>
<p>8.3.3 Correction to Spearman s Rank Correlation Coefficient When There Are Tied Ranks 193</p>
<p>8.4 Multiple Correlation Analysis 195</p>
<p>8.4.1 Parametric Multiple Correlation 195</p>
<p>8.4.2 Nonparametric Multiple Correlation: Kendall s Coefficient of Concordance 195</p>
<p>8.5 Determining Causation 198</p>
<p>8.6 Summary 198</p>
<p>References 204</p>
<p>9 Regression Analysis 205</p>
<p>9.1 Introduction 205</p>
<p>9.2 Linear Regression 205</p>
<p>9.2.1 Simple Linear Regression 207</p>
<p>9.2.2 Nonconstant Variance Transformations and Weighted Least Squares Regression 209</p>
<p>9.2.3 Multiple Linear Regression 213</p>
<p>9.2.3.1 Multiple Regression in Excel 215</p>
<p>9.2.3.2 Multiple Regression Using the Excel Solver Utility 218</p>
<p>9.2.3.3 Multiple Regression Using Advanced Software Packages 221</p>
<p>9.2.4 Using Regression for Factorial ANOVA with Unequal Sample Sizes 222</p>
<p>9.2.5 Multiple Correlation Analysis Using Multiple Regression 227</p>
<p>9.2.5.1 Assumptions of Parametric Multiple Correlation 233</p>
<p>9.2.5.2 Options When Collinearity Is a Problem 233</p>
<p>9.2.6 Polynomial Regression 234</p>
<p>9.2.7 Interpreting Linear Regression Results 234</p>
<p>9.2.8 Linear Regression versus ANOVA 235</p>
<p>9.3 Logistic Regression 235</p>
<p>9.3.1 Odds and Odds Ratios 236</p>
<p>9.3.2 The Logit Transformation 238</p>
<p>9.3.3 The Likelihood Function 240</p>
<p>9.3.4 Logistic Regression in Excel 240</p>
<p>9.3.5 Likelihood Ratio Test for Significance of MLE Coefficients 241</p>
<p>9.3.6 Odds Ratio Confidence Limits in Multivariate Models 243</p>
<p>9.4 Poisson Regression 243</p>
<p>9.4.1 Poisson Regression Model 243</p>
<p>9.4.2 Poisson Regression in Excel 244</p>
<p>9.5 Regression with Excel Add–ons 245</p>
<p>9.6 Summary 246</p>
<p>References 252</p>
<p>10 Analysis of Covariance 253</p>
<p>10.1 Introduction 253</p>
<p>10.2 The Simple ANCOVA Model and Its Assumptions 253</p>
<p>10.2.1 Required Regressions 255</p>
<p>10.2.2 Checking the ANCOVA Assumptions 258</p>
<p>10.2.2.1 Linearity, Independence, and Normality 258</p>
<p>10.2.2.2 Similar Variances 258</p>
<p>10.2.2.3 Equal Regression Slopes 258</p>
<p>10.2.3 Testing and Estimating the Treatment Effects 259</p>
<p>10.3 The Two–Factor Covariance Model 261</p>
<p>Summary 261</p>
<p>References 263</p>
<p>11 Experimental Design 265</p>
<p>11.1 Introduction 265</p>
<p>11.2 Randomization 266</p>
<p>11.3 Simple Randomized Experiments 266</p>
<p>11.4 Experimental Designs Blocking on Categorical Factors 267</p>
<p>11.5 Randomized Full Factorial Experimental Design 270</p>
<p>11.6 Randomized Full Factorial Design with Blocking 271</p>
<p>11.7 Split Plot Experimental Designs 272</p>
<p>11.8 Balanced Experimental Designs Latin Square 273</p>
<p>11.9 Two–Level Factorial Experimental Designs with Quantitative Factors 274</p>
<p>11.9.1 Two–Level Factorial Designs for Exploratory Studies 274</p>
<p>11.9.2 The Standard Order 275</p>
<p>11.9.3 Calculating Main Effects 276</p>
<p>11.9.4 Calculating Interactions 278</p>
<p>11.9.5 Estimating Standard Errors 278</p>
<p>11.9.6 Estimating Effects with REGRESSION in Excel 279</p>
<p>11.9.7 Interpretation 280</p>
<p>11.9.8 Cube, Surface, and NED Plots as an Aid to Interpretation 280</p>
<p>11.9.9 Fractional Factorial Two–Level Experiments 282</p>
<p>11.10 Summary 282</p>
<p>References 284</p>
<p>12 Uncertainty and Sensitivity Analysis 285</p>
<p>12.1 Introduction 285</p>
<p>12.2 Simulation Modeling 285</p>
<p>12.2.1 Propagation of Errors 286</p>
<p>12.2.2 Simple Bounding 287</p>
<p>12.2.2.1 Sums and Differences 287</p>
<p>12.2.2.2 Products and Ratios 287</p>
<p>12.2.2.3 Powers 289</p>
<p>12.2.3 Addition in Quadrature 289</p>
<p>12.2.3.1 Sums and Differences 289</p>
<p>12.2.3.2 Products and Ratios 290</p>
<p>12.2.3.3 Powers 292</p>
<p>12.2.4 LOD and LOQ Revisited Dust Sample Gravimetric Analysis 292</p>
<p>12.3 Uncertainty Analysis 295</p>
<p>12.4 Sensitivity Analysis 296</p>
<p>12.4.1 One–at–a–Time (OAT) Analysis 296</p>
<p>12.4.2 Variance–Based Analysis 297</p>
<p>12.5 Further Reading on Uncertainty and Sensitivity Analysis 297</p>
<p>12.6 Monte Carlo Simulation 297</p>
<p>12.7 Monte Carlo Simulation in Excel 298</p>
<p>12.7.1 Generating Random Numbers in Excel 298</p>
<p>12.7.2 The Populated Spreadsheet Approach 299</p>
<p>12.7.3 Monte Carlo Simulation Using VBA Macros 299</p>
<p>12.8 Summary 303</p>
<p>References 307</p>
<p>13 Bayes Theorem and Bayesian Decision Analysis 309</p>
<p>13.1 Introduction 309</p>
<p>13.2 Bayes Theorem 310</p>
<p>13.3 Sensitivity, Specificity, and Positive and Negative Predictive Value in Screening Tests 310</p>
<p>13.4 Bayesian Decision Analysis in Exposure Control Banding 312</p>
<p>13.4.1 Introduction to BDA 312</p>
<p>13.4.2 The Prior Distribution and the Parameter Space 314</p>
<p>13.4.3 The Posterior Distribution and Likelihood Function 314</p>
<p>13.4.4 Relative Influences of the Prior and the Data 315</p>
<p>13.4.5 Frequentist versus Bayesian Perspectives 316</p>
<p>References 318</p>
<p>A z–Tables of the Standard Normal Distribution 321</p>
<p>B Critical Values of the Chi–Square Distribution 327</p>
<p>C Critical Values for the t–Distribution 329</p>
<p>D Critical Values for Lilliefors Test 331</p>
<p>Reference 332</p>
<p>E Shapiro Wilk W Test Coefficients and Critical Values 333</p>
<p>References 336</p>
<p>F Critical Values of the F Distribution for =0.05 337</p>
<p>G Critical U Values for the Mann Whitney U Test 341</p>
<p>Reference 342</p>
<p>H Critical Wilcoxon Matched Pairs Test t Values 343</p>
<p>Reference 344</p>
<p>I K Values for Upper Tolerance Limits 345</p>
<p>Reference 346</p>
<p>J Exceedance Fraction 95% Lower Confidence Limit versus Z 347</p>
<p>References 347</p>
<p>K q Values for Tukey s, Tukey Kramer, and Nemenyi s MSD Tests 349</p>
<p>L q Values for Dunnett s Test 351</p>
<p>References 353</p>
<p>M Q Values for the Bonferroni Dunn MSD Test 355</p>
<p>N Critical Spearman Rank Correlation Test Values 357</p>
<p>O Critical Values of Kendall s W 359</p>
<p>Reference 361</p>
<p>Index 363</p>

Rubrieken

    Personen

      Trefwoorden

        Statistical Tools for the Comprehensive Practice of Industrial Hygiene and Environmental Health Sciences