Photosynthesis – New Approaches to the Molecular Cellular, and Organismal Levels

A New Approach to the Molecular, Cellular, and Organismal Levels

Specificaties
Gebonden, 416 blz. | Engels
John Wiley & Sons | e druk, 2015
ISBN13: 9781119083702
Rubricering
John Wiley & Sons e druk, 2015 9781119083702
Verwachte levertijd ongeveer 9 werkdagen

Specificaties

ISBN13:9781119083702
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:416

Inhoudsopgave

<p>Preface xiii</p>
<p>List of Contributors xvii</p>
<p>1 The Multiple Roles of Various Reactive Oxygen Species (ROS) in Photosynthetic Organisms 1<br /> Franz–Josef Schmitt, Vladimir D. Kreslavski, Sergey K. Zharmukhamedov, Th omas Friedrich, Gernot Renger, Dmitry A. Los, Vladimir V. Kuznetsov and Suleyman I. Allakhverdiev</p>
<p>1.1 Introduction 2</p>
<p>1.2 Generation, Decay and Deleterious Action of ROS 7</p>
<p>1.3 Non–photochemical Quenching in Plants and Cyanobacteria 15</p>
<p>1.4 Monitoring of ROS 19</p>
<p>1.4.1 Exogenous ROS Sensors 20</p>
<p>1.4.2 Genetically Encoded ROS Sensors 25</p>
<p>1.4.3 Chromophore–Assisted Laser Inactivation (CALI) 28</p>
<p>1.5 Signaling Role of ROS 30</p>
<p>1.5.1 Signaling by Superoxide and Hydrogen Peroxide in Cyanobacteria 37</p>
<p>1.5.2 Signaling by 1 gO2 and Hydrogen Peroxide in Eukaryotic Cells and Plants 41</p>
<p>1.6 Light–Induced ROS and Cell Redox Control and Interaction with the Nuclear Gene Expression 45</p>
<p>1.7 Second Messengers and Signaling Molecules in H2O2 Signaling Chains and (Nonlinear) Networking 49</p>
<p>1.8 Concluding Remarks and Future Perspectives 55</p>
<p>Acknowledgments 56</p>
<p>Abbreviations 57</p>
<p>References 58</p>
<p>2 Photooxidation of Mn–bicarbonate Complexes by Reaction Centers of Purple Bacteria as a Possible Stage in the Evolutionary Origin of the Water–Oxidizing Complex of Photosystem II 85<br /> Vasily V. Terentyev, Andrey A. Khorobrykh and Vyacheslav V. Klimov</p>
<p>2.1 Introduction 86</p>
<p>2.2 Appearance of Photosynthesis 87</p>
<p>2.3 Classification of Photosynthetic Bacteria 88</p>
<p>2.4 Mechanism of Light Energy Transformation during Photosynthesis 90</p>
<p>2.5 The Water–oxidizing Complex of Photosystem II 92</p>
<p>2.6 Localization and Function of Bicarbonate in Photosystem II 95</p>
<p>2.7 Composition and Electrochemical Properties of Mn2+–bicarbonate Complexes 100</p>
<p>2.8 A Possible Role of Mn2+–bicarbonate Complexes for the Origin and Evolution of the Inorganic Core of the Water–oxidizing Complex of Photosystem II 104</p>
<p>2.9 Investigation of Redox Interaction Between Mn2+ and Type II Reaction Centers of Anoxygenic Photosynthetic Bacteria in the Presence of Bicarbonate 107</p>
<p>2.10 Influence of the Redox Potential of the +/ Pair and Steric Accessibility of P+ on Electron Donation</p>
<p>from Mn2+ to Type II Reaction Centers from Anoxygenic Photosynthetic Bacteria in the Presence of Bicarbonate 113</p>
<p>2.11 Conclusions 121</p>
<p>Acknowledgments 122</p>
<p>Abbreviations 122</p>
<p>References 123</p>
<p>3 Hydrogen Metabolism in Microalgae 133<br /> Anatoly A. Tsygankov, Azat Abdullatypov</p>
<p>3.1 Introduction 133</p>
<p>3.2 Physiology of Hydrogen Metabolism 134</p>
<p>3.3 Hydrogenases 136</p>
<p>3.4 Ferredoxin 139</p>
<p>Contents ix</p>
<p>3.5 Nutrient Deprivation 140</p>
<p>3.6 Physiological Significance of Light–Dependent Hydrogen Production 146</p>
<p>3.7 Practical Importance of Hydrogen Photoproduction 147</p>
<p>3.8 Towards Practical Application of Microalgal Hydrogen Production 151</p>
<p>3.8.1 Hydrogenase Modifications 151</p>
<p>3.8.2 Elimination of Routes Competitive to H2 production 152</p>
<p>3.8.3 The Role of Transmembrane Gradient of the Potential 153</p>
<p>3.9 Conclusion 154</p>
<p>Acknowledgements 154</p>
<p>Abbreviations 154</p>
<p>References 155</p>
<p>4 The Structure and Regulation of Chloroplast ATP Synthase 163<br /> Alexander N. Malyan</p>
<p>4.1 Introduction 163</p>
<p>4.2 The Structure and Functional Basics of Chloroplast ATP Synthase 164</p>
<p>4.3 The Thiol–Dependent Mechanism of Chloroplast ATP Synthase Regulation 166</p>
<p>4.4 The Nucleotide–Dependent Mechanism of Chloroplast ATP Synthase Regulation 167</p>
<p>4.5 The Properties and the Role of Chloroplast ATPase Noncatalytic Sites 168</p>
<p>4.6 Conclusion 173</p>
<p>Abbreviations 173</p>
<p>References 173</p>
<p>5 Structural and Functional Organization of the Pigment–Protein Complexes of the Photosystems in Mutant Cells of Green Algae and Higher Plants 179<br /> Vladimir G. Ladygin</p>
<p>5.1 Introduction 180</p>
<p>5.2 The Mutants as Model Objects 182</p>
<p>5.2.1 Effects of Mutagenic Agents 182</p>
<p>5.2.2 Obtaining Mutants 182</p>
<p>5.3 The Chlorophyll–Protein Complexes 185</p>
<p>5.3.1 Pigment Content of Individual Complexes 185</p>
<p>5.3.2 Identification of Chlorophyll–Protein Complexes 188</p>
<p>5.3.3 Polypeptide Composition of Individual Complexes 188</p>
<p>5.4 Spectral Properties of Native Chlorophyll–Protein Complexes 189</p>
<p>5.4.1 Spectral Forms of Chlorophyll in Native Complexes 189</p>
<p>5.4.2 Fluorescence Spectra of the Chlorophyll in Native Complexes 190</p>
<p>5.5 Functional Organization of the Photosystems 195</p>
<p>5.5.1 Photosynthetic Activity 195</p>
<p>5.5.2 The Value of Photosynthetic Unit 197</p>
<p>5.5.3 The Number of the Reaction Centers of Photosystems 197</p>
<p>5.6 Structural Localization of the Photosystem in Chloroplast Thylakoids 201</p>
<p>5.6.1 Spatial Localization of the Photosystem in Thylakoid Membranes 201</p>
<p>5.6.2 Localization of Carotenoids in Pigment–Protein Complexes of the Photosystems 210</p>
<p>5.7 Molecular Organization of the Complexes of Photosystem I and II 213</p>
<p>5.7.1 Structure of the Complex of Photosystem I 213</p>
<p>5.7.2 Structure of the Complex of Photosystem II 217</p>
<p>5.7.3 The Core Complex of Photosystem II 220</p>
<p>Abbreviations 222</p>
<p>References 222</p>
<p>6 Photosynthetic Carbon Metabolism: Strategy of Adaptation over Evolutionary History 233<br /> Irina R. Fomina and Karl Y. Biel</p>
<p>6.1 Introduction 234</p>
<p>6.2 Photosynthesis in Prokaryotes 235</p>
<p>6.2.1 What Was the First Autotroph on Our Planet? 235</p>
<p>6.2.2 Green Non–Sulfur Bacteria, Green Sulfur Bacteria, Heliobacteria: from the Archaic Way of Carbon Reduction to the Arnon–Buchanan Cycle 240</p>
<p>6.2.3 Purple Bacteria: The Emergence of the Reductive Pentose Phosphate Cycle Biochemical Add–ons to the Arnon–Buchanan Cycle 245</p>
<p>6.2.4 Cyanobacteria: The Reductive Pentose Phosphate Cycle Becomes the Main Path of Carbon in Photosynthesis 247</p>
<p>6.2.5 The Main Stages of Development of Photosynthetic Carbon Metabolism in Prokaryotes 249</p>
<p>6.3 Photosynthesis in Eukaryotes 250</p>
<p>6.3.1 C3 plants: Photosynthesis via the Reductive Pentose Phosphate or Benson–Bassham–Calvin cycle 250</p>
<p>6.3.2 C4 plants: Cooperative Photosynthesis 254</p>
<p>6.3.3 CAM–plants: Crassulacean Acid Metabolism 259</p>
<p>6.3.4 C4–CAM plants: Cooperation of the Second Order 262</p>
<p>6.4 About Compartmentalization and Cooperation between the Reduction and Oxidation Reactions in Photosynthetic Cells 264</p>
<p>6.5 Examples of Physiological Adaptation of Photosynthetic Carbon Metabolism to Environmental Factors at the Cellular, Tissue, and Organism Levels 266</p>
<p>6.5.1 Cooperative Relationship of Phototrophic Endosymbionts and Heterotrophic Host Cells with Carbon Assimilation 266</p>
<p>6.5.2 The Protective Role of Leaf Tissues in Illuminated Plants 283</p>
<p>6.6 General Conclusion 293</p>
<p>Acknowledgements 297</p>
<p>Abbreviations 297</p>
<p>References 298</p>
<p>7 Adaptive Changes of Photosynthetic Apparatus to Higher CO2 Concentration 327<br /> Anatoly A. Kosobryukhov</p>
<p>7.1 Introduction 327</p>
<p>7.2 Higher Concentration of CO2 and Its Effect on the Plants: History of the Question 328</p>
<p>7.3 Influence of the Higher CO2 Concentration on the Growth and Productivity of the Plants 329</p>
<p>7.4 Photosynthesis at Short–Term Increase of CO2 Concentration 331</p>
<p>7.5 Adaptive Changes of Photosynthetic Apparatus at Long–Term Effect of the Higher CO2 Concentration 332</p>
<p>7.6 The Role of Carbohydrate Metabolism in Regulation of the Photosynthetic Apparatus Activity at Increased CO2 Concentration 334</p>
<p>7.7 Soluble Sugars in Leaves and Other Plant Organs 337</p>
<p>7.8 Dependence of Photosynthetic Rate on Environmental Factors and its Regulation 338</p>
<p>Abbreviations 344</p>
<p>References 344</p>
<p>8 Photosynthetic Machinery Response to Low Temperature Stress 355<br /> Evgenia F. Markovskaya, Anatoly A. Kosobryukhov and Vladimir D. Kreslavski</p>
<p>8.1 Mechanisms of Plant Adaptation to Low Temperature 355</p>
<p>8.2 Role of Reactive Oxygen Species 357</p>
<p>8.3 Plant Cell Membranes and Their Role in Response to Low Temperature 358</p>
<p>8.4 Hormonal Response to the Temperature 362</p>
<p>8.5 Phytochrome as a Receptor of Low Temperature 362</p>
<p>8.6 Carbohydrate Function under Low Temperature 364</p>
<p>8.7 Protein Changes 365</p>
<p>8.8 Cold Stress and Photoinhibition 367</p>
<p>8.9 Molecular Mechanisms of Plants Response to Low Temperatures 368</p>
<p>8.10 Concluding Remarks and Future Perspectives 370</p>
<p>Acknowledgments 370</p>
<p>References 370</p>
<p>Index 383</p>

Rubrieken

    Personen

      Trefwoorden

        Photosynthesis – New Approaches to the Molecular Cellular, and Organismal Levels