B Henderson
John Wiley & Sons
e druk, 2017
9781118951118
Moonlighting Proteins – Novel Virulence Factors in Bacterial Infections
Novel Virulence Factors in Bacterial Infections
Specificaties
Gebonden, 472 blz.
|
Engels
John Wiley & Sons |
e druk, 2017
ISBN13: 9781118951118
Rubricering
Levertijd ongeveer 15 werkdagen
Specificaties
Inhoudsopgave
<p>List of Contributors xv</p>
<p>Preface xix</p>
<p>About the Author xxiii</p>
<p>Part I Overview of Protein Moonlighting 1</p>
<p>1 What is Protein Moonlighting and Why is it Important? 3<br />Constance Jeffery</p>
<p>1.1 What is Protein Moonlighting? 3</p>
<p>1.2 Why is Moonlighting Important? 5</p>
<p>1.3 Current questions 11</p>
<p>1.4 Conclusions 13</p>
<p>References 13</p>
<p>2 Exploring Structure Function Relationships in Moonlighting Proteins 21<br />Sayoni Das, Ishita Khan, Daisuke Kihara, and Christine Orengo</p>
<p>2.1 Introduction 21</p>
<p>2.2 Multiple Facets of Protein Function 22</p>
<p>2.3 The Protein Structure Function Paradigm 23</p>
<p>2.4 Computational Approaches for Identifying Moonlighting Proteins 25</p>
<p>2.5 Classification of Moonlighting Proteins 26</p>
<p>2.6 Conclusions 37</p>
<p>References 39</p>
<p>Part II Proteins Moonlighting in Prokarya 45</p>
<p>3 Overview of Protein Moonlighting in Bacterial Virulence 47<br />Brian Henderson</p>
<p>3.1 Introduction 47</p>
<p>3.2 The Meaning of Bacterial Virulence and Virulence Factors 47</p>
<p>3.3 Affinity as a Measure of the Biological Importance of Proteins 49</p>
<p>3.4 Moonlighting Bacterial Virulence Proteins 50</p>
<p>3.5 Bacterial Moonlighting Proteins Conclusively Shown to be Virulence Factors 64</p>
<p>3.6 Eukaryotic Moonlighting Proteins That Aid in Bacterial Virulence 66</p>
<p>3.7 Conclusions 67</p>
<p>References 68</p>
<p>4 Moonlighting Proteins as Cross ]Reactive Auto ]Antigens 81<br />Willem van Eden</p>
<p>4.1 Autoimmunity and Conservation 81</p>
<p>4.2 Immunogenicity of Conserved Proteins 82</p>
<p>4.3 HSP Co ]induction, Food, Microbiota, and T Regulations 84</p>
<p>4.4 The Contribution of Moonlighting Virulence Factors to Immunological Tolerance 87</p>
<p>References 88</p>
<p>Part III Proteins Moonlighting in Bacterial Virulence 93</p>
<p>Part 3.1 Chaperonins: A Family of Proteins with Widespread Virulence Properties 95</p>
<p>5 Chaperonin 60 Paralogs in Mycobacterium tuberculosis and Tubercle Formation 97<br />Brian Henderson</p>
<p>5.1 Introduction 97</p>
<p>5.2 Tuberculosis and the Tuberculoid Granuloma 97</p>
<p>5.3 Mycobacterial Factors Responsible for Granuloma Formation 98</p>
<p>5.4 Mycobacterium tuberculosis Chaperonin 60 Proteins, Macrophage Function, and Granuloma Formation 100</p>
<p>5.5 Conclusions 106</p>
<p>References 106</p>
<p>6 Legionella pneumophila Chaperonin 60, an Extra ] and Intra ]Cellular Moonlighting Virulence ]Related Factor 111<br />Karla N. Valenzuela ]Valderas, Angela L. Riveroll, Peter Robertson, Lois E. Murray, and Rafael A. Garduño</p>
<p>6.1 Background 111</p>
<p>6.2 HtpB is an Essential Chaperonin with Protein ]folding Activity 112</p>
<p>6.3 Experimental Approaches to Elucidate the Functional Mechanisms of HtpB 112</p>
<p>6.4 Secretion Mechanisms Potentially Responsible for Transporting HtpB to Extracytoplasmic Locations 120</p>
<p>6.5 Identifying Functionally Important Amino Acid Positions in HtpB 124</p>
<p>6.6 Functional Evolution of HtpB 126</p>
<p>6.7 Concluding Remarks 127</p>
<p>References 129</p>
<p>Part 3.2 Peptidylprolyl Isomerases, Bacterial Virulence, and Targets for Therapy 135</p>
<p>7 An Overview of Peptidylprolyl Isomerases (PPIs) in Bacterial Virulence 137<br />Brian Henderson</p>
<p>7.1 Introduction 137</p>
<p>7.2 Proline and PPIs 137</p>
<p>7.3 Host PPIs and Responses to Bacteria and Bacterial Toxins 138</p>
<p>7.4 Bacterial PPIs as Virulence Factors 138</p>
<p>7.5 Other Bacterial PPIs Involved in Virulence 140</p>
<p>7.6 Conclusions 142</p>
<p>References 142</p>
<p>Part 3.3 Glyceraldehyde 3 ]Phosphate Dehydrogenase (GAPDH): A Multifunctional Virulence Factor 147</p>
<p>8 GAPDH: A Multifunctional Moonlighting Protein in Eukaryotes and Prokaryotes 149<br />Michael A. Sirover</p>
<p>8.1 Introduction 149</p>
<p>8.2 GAPDH Membrane Function and Bacterial Virulence 150</p>
<p>8.3 Role of Nitric Oxide in GAPDH Bacterial Virulence 153</p>
<p>8.4 GAPDH Control of Gene Expression and Bacterial Virulence 158</p>
<p>8.5 Discussion 160</p>
<p>Acknowledgements 162</p>
<p>References 162</p>
<p>9 Streptococcus pyogenes GAPDH: A Cell ]Surface Major Virulence Determinant 169<br />Vijay Pancholi</p>
<p>9.1 Introduction and Early Discovery 169</p>
<p>9.2 GAS GAPDH: A Major Surface Protein with Multiple Binding Activities 170</p>
<p>9.3 AutoADP ]Ribosylation of SDH and Other Post ]Translational Modifications 172</p>
<p>9.4 Implications of the Binding of SDH to Mammalian Proteins for Cell Signaling and Virulence Mechanisms 173</p>
<p>9.5 Surface Export of SDH/GAPDH: A Cause or Effect? 178</p>
<p>9.6 SDH: The GAS Virulence Factor ]Regulating Virulence Factor 180</p>
<p>9.7 Concluding Remarks and Future Perspectives 183</p>
<p>References 183</p>
<p>10 Group B Streptococcus GAPDH and Immune Evasion 195<br />Paula Ferreira and Patrick Trieu ]Cuot</p>
<p>10.1 The Bacterium GBS 195</p>
<p>10.2 Neonates are More Susceptible to GBS Infection than Adults 195</p>
<p>10.3 IL ]10 Production Facilitates Bacterial Infection 196</p>
<p>10.4 GBS Glyceraldehyde ]3 ]Phosphate Dehydrogenase Induces IL ]10 Production 197</p>
<p>10.5 Summary 199</p>
<p>References 200</p>
<p>11 Mycobacterium tuberculosis Cell ]Surface GAPDH Functions as a Transferrin Receptor 205<br />Vishant M. Boradia, Manoj Raje, and Chaaya Iyengar Raje</p>
<p>11.1 Introduction 205</p>
<p>11.2 Iron Acquisition by Bacteria 206</p>
<p>11.3 Iron Acquisition by Intracellular Pathogens 207</p>
<p>11.4 Iron Acquisition by M. tb 208</p>
<p>11.5 Glyceraldehyde ]3 ]Phosphate Dehydrogenase (GAPDH) 210</p>
<p>11.6 Macrophage GAPDH and Iron Uptake 210</p>
<p>11.7 Mycobacterial GAPDH and Iron Uptake 212</p>
<p>11.8 Conclusions and Future Perspectives 216</p>
<p>Acknowledgements 218</p>
<p>References 219</p>
<p>12 GAPDH and Probiotic Organisms 225<br />Hideki Kinoshita</p>
<p>12.1 Introduction 225</p>
<p>12.2 Probiotics and Safety 225</p>
<p>12.3 Potential Risk of Probiotics 227</p>
<p>12.4 Plasminogen Binding and Enhancement of its Activation 228</p>
<p>12.5 GAPDH as an Adhesin 229</p>
<p>12.6 Binding Regions 232</p>
<p>12.7 Mechanisms of Secretion and Surface Localization 234</p>
<p>12.8 Other Functions 235</p>
<p>12.9 Conclusion 236</p>
<p>References 237</p>
<p>Part 3.4 Cell ]Surface Enolase: A Complex Virulence Factor 245</p>
<p>13 Impact of Streptococcal Enolase in Virulence 247<br />Marcus Fulde and Simone Bergmann</p>
<p>13.1 Introduction 247</p>
<p>13.2 General Characteristics 248</p>
<p>13.3 Expression and Surface Exposition of Enolase 249</p>
<p>13.4 Streptococcal Enolase as Adhesion Cofactor 252</p>
<p>13.5 Enolase as Pro ]Fibrinolytic Cofactor 256</p>
<p>13.6 Streptococcal Enolase as Cariogenic Factor in Dental Disease 258</p>
<p>13.7 Conclusion 258</p>
<p>Acknowledgements 259</p>
<p>References 259</p>
<p>14 Streptococcal Enolase and Immune Evasion 269<br />Masaya Yamaguchi and Shigetada Kawabata</p>
<p>14.1 Introduction 269</p>
<p>14.2 Localization and Crystal Structure 271</p>
<p>14.3 Multiple Binding Activities of ]Enolase 273</p>
<p>14.4 Involvement of ]Enolase in Gene Expression Regulation 276</p>
<p>14.5 Role of Anti ] ]Enolase Antibodies in Host Immunity 277</p>
<p>14.6 ]Enolase as Potential Therapeutic Target 279</p>
<p>14.7 Questions Concerning ]Enolase 281</p>
<p>References 281</p>
<p>15 B. burgdorferi Enolase and Plasminogen Binding 291<br />Catherine A. Brissette</p>
<p>15.1 Introduction to Lyme Disease 291</p>
<p>15.2 Life Cycle 292</p>
<p>15.3 Borrelia Virulence Factors 292</p>
<p>15.4 Plasminogen Binding by Bacteria 293</p>
<p>15.5 B. burgdorferi and Plasminogen Binding 294</p>
<p>15.6 Enolase 295</p>
<p>15.7 B. burgdorferi Enolase and Plasminogen Binding 297</p>
<p>15.8 Concluding Thoughts 301</p>
<p>Acknowledgements 301</p>
<p>References 301</p>
<p>Part 3.5 Other Glycolytic Enzymes Acting as Virulence Factors 309</p>
<p>16 Triosephosphate Isomerase fromStaphylococcus aureus and Plasminogen Receptors on Microbial Pathogens 311<br />Reiko Ikeda and Tomoe Ichikawa</p>
<p>16.1 Introduction 311</p>
<p>16.2 Identification of Triosephosphate Isomerase on S. aureus as a Molecule that Binds to the Pathogenic Yeast C. neoformans 312</p>
<p>16.3 Binding of Triosephosphate Isomerase with Human Plasminogen 314</p>
<p>16.4 Plasminogen ]Binding Proteins on Trichosporon asahii 314</p>
<p>16.5 Plasminogen Receptors on C. neoformans 316</p>
<p>16.6 Conclusions 316</p>
<p>References 317</p>
<p>17 Moonlighting Functions of Bacterial Fructose 1,6 ]Bisphosphate Aldolases 321<br />Neil J Oldfield, Fariza Shams, Karl G Wooldridge, and David PJ Turner</p>
<p>17.1 Introduction 321</p>
<p>17.2 Fructose 1,6 ]bisphosphate Aldolase in Metabolism 321</p>
<p>17.3 Surface Localization of Streptococcal Fructose 1,6 ]bisphosphate Aldolases 322</p>
<p>17.4. Pneumococcal FBA Adhesin Binds Flamingo Cadherin Receptor 323</p>
<p>17.5 FBA is Required for Optimal Meningococcal Adhesion to Human Cells 324</p>
<p>17.6 Mycobacterium tuberculosis FBA Binds Human Plasminogen 325</p>
<p>17.7 Other Examples of FBAs with Possible Roles in Pathogenesis 326</p>
<p>17.8 Conclusions 327</p>
<p>References 327</p>
<p>Part 3.6 Other Metabolic Enzymes Functioning in Bacterial Virulence 333</p>
<p>18 Pyruvate Dehydrogenase Subunit B and Plasminogen Binding in Mycoplasma 335<br />Anne Gründel, Kathleen Friedrich, Melanie Pfeiffer, Enno Jacobs, and Roger Dumke</p>
<p>18.1 Introduction 335</p>
<p>18.2 Binding of Human Plasminogen to M. pneumoniae 337</p>
<p>18.3 Localization of PDHB on the Surface of M. pneumoniae Cells 340</p>
<p>18.4 Conclusions 343</p>
<p>References 344</p>
<p>Part 3.7 Miscellaneous Bacterial Moonlighting Virulence Proteins 349</p>
<p>19 Unexpected Interactions of Leptospiral Ef ]Tu and Enolase 351<br />Natália Salazar and Angela Barbosa</p>
<p>19.1 Leptospira Host Interactions 351</p>
<p>19.2 Leptospira Ef ]Tu 352</p>
<p>19.3 Leptospira Enolase 353</p>
<p>19.4 Conclusions 354</p>
<p>References 354</p>
<p>20 Mycobacterium tuberculosis Antigen 85 Family Proteins: Mycolyl Transferases and Matrix ]Binding Adhesins 357<br />Christopher P. Ptak, Chih ]Jung Kuo, and Yung ]Fu Chang</p>
<p>20.1 Introduction 357</p>
<p>20.2 Identification of Antigen 85 358</p>
<p>20.3 Antigen 85 Family Proteins: Mycolyl Transferases 359</p>
<p>20.4 Antigen 85 Family Proteins: Matrix ]Binding Adhesins 361</p>
<p>20.5 Conclusion 365</p>
<p>Acknowledgements 365</p>
<p>References 365</p>
<p>Part 3.8 Bacterial Moonlighting Proteins that Function as Cytokine Binders/Receptors 371</p>
<p>21 Miscellaneous IL ]1 ]Binding Proteins of Aggregatibacter actinomycetemcomitans 373<br />Riikka Ihalin</p>
<p>21.1 Introduction 373</p>
<p>21.2 A. actinomycetemcomitans Biofilms Sequester IL ]1 374</p>
<p>21.3 A. actinomycetemcomitans Cells Take in IL ]1 375</p>
<p>21.4 The Potential Effects of IL ]1 on A. actinomycetemcomitans 379</p>
<p>21.5 Conclusions 381</p>
<p>References 382</p>
<p>Part 3.9 Moonlighting Outside of the Box 387</p>
<p>22 Bacteriophage Moonlighting Proteins in the Control of Bacterial Pathogenicity 389<br />Janine Bowring, Alberto Marina, José R Penadés, and Nuria Quiles ]Puchalt</p>
<p>22.1 Introduction 389</p>
<p>22.2 Bacteriophage T4 I ]TevI Homing Endonuclease Functions as a Transcriptional Autorepressor 391</p>
<p>22.3 Capsid Psu Protein of Bacteriophage P4 Functions as a Rho Transcription Antiterminator 394</p>
<p>22.4 Bacteriophage Lytic Enzymes Moonlight as Structural Proteins 398</p>
<p>22.5 Moonlighting Bacteriophage Proteins De ]Repressing Phage ]Inducible Chromosomal Islands 398</p>
<p>22.6 dUTPase, a Metabolic Enzyme with a Moonlighting Signalling Role 401</p>
<p>22.7 Escherichia coli Thioredoxin Protein Moonlights with T7 DNA Polymerase for Enhanced T7 DNA Replication 404</p>
<p>22.8 Discussion 404</p>
<p>References 406</p>
<p>23 Viral Entry Glycoproteins and Viral Immune Evasion 413<br />Jonathan D. Cook and Jeffrey E. Lee</p>
<p>23.1 Introduction 413</p>
<p>23.2 Enveloped Viral Entry 414</p>
<p>23.3 Moonlighting Activities of Viral Entry Glycoproteins 415</p>
<p>23.4 Viral Entry Proteins Moonlighting as Saboteurs of Cellular Pathways 427</p>
<p>23.5 Conclusions 429</p>
<p>References 429</p>
<p>Index 439</p>
<p>Preface xix</p>
<p>About the Author xxiii</p>
<p>Part I Overview of Protein Moonlighting 1</p>
<p>1 What is Protein Moonlighting and Why is it Important? 3<br />Constance Jeffery</p>
<p>1.1 What is Protein Moonlighting? 3</p>
<p>1.2 Why is Moonlighting Important? 5</p>
<p>1.3 Current questions 11</p>
<p>1.4 Conclusions 13</p>
<p>References 13</p>
<p>2 Exploring Structure Function Relationships in Moonlighting Proteins 21<br />Sayoni Das, Ishita Khan, Daisuke Kihara, and Christine Orengo</p>
<p>2.1 Introduction 21</p>
<p>2.2 Multiple Facets of Protein Function 22</p>
<p>2.3 The Protein Structure Function Paradigm 23</p>
<p>2.4 Computational Approaches for Identifying Moonlighting Proteins 25</p>
<p>2.5 Classification of Moonlighting Proteins 26</p>
<p>2.6 Conclusions 37</p>
<p>References 39</p>
<p>Part II Proteins Moonlighting in Prokarya 45</p>
<p>3 Overview of Protein Moonlighting in Bacterial Virulence 47<br />Brian Henderson</p>
<p>3.1 Introduction 47</p>
<p>3.2 The Meaning of Bacterial Virulence and Virulence Factors 47</p>
<p>3.3 Affinity as a Measure of the Biological Importance of Proteins 49</p>
<p>3.4 Moonlighting Bacterial Virulence Proteins 50</p>
<p>3.5 Bacterial Moonlighting Proteins Conclusively Shown to be Virulence Factors 64</p>
<p>3.6 Eukaryotic Moonlighting Proteins That Aid in Bacterial Virulence 66</p>
<p>3.7 Conclusions 67</p>
<p>References 68</p>
<p>4 Moonlighting Proteins as Cross ]Reactive Auto ]Antigens 81<br />Willem van Eden</p>
<p>4.1 Autoimmunity and Conservation 81</p>
<p>4.2 Immunogenicity of Conserved Proteins 82</p>
<p>4.3 HSP Co ]induction, Food, Microbiota, and T Regulations 84</p>
<p>4.4 The Contribution of Moonlighting Virulence Factors to Immunological Tolerance 87</p>
<p>References 88</p>
<p>Part III Proteins Moonlighting in Bacterial Virulence 93</p>
<p>Part 3.1 Chaperonins: A Family of Proteins with Widespread Virulence Properties 95</p>
<p>5 Chaperonin 60 Paralogs in Mycobacterium tuberculosis and Tubercle Formation 97<br />Brian Henderson</p>
<p>5.1 Introduction 97</p>
<p>5.2 Tuberculosis and the Tuberculoid Granuloma 97</p>
<p>5.3 Mycobacterial Factors Responsible for Granuloma Formation 98</p>
<p>5.4 Mycobacterium tuberculosis Chaperonin 60 Proteins, Macrophage Function, and Granuloma Formation 100</p>
<p>5.5 Conclusions 106</p>
<p>References 106</p>
<p>6 Legionella pneumophila Chaperonin 60, an Extra ] and Intra ]Cellular Moonlighting Virulence ]Related Factor 111<br />Karla N. Valenzuela ]Valderas, Angela L. Riveroll, Peter Robertson, Lois E. Murray, and Rafael A. Garduño</p>
<p>6.1 Background 111</p>
<p>6.2 HtpB is an Essential Chaperonin with Protein ]folding Activity 112</p>
<p>6.3 Experimental Approaches to Elucidate the Functional Mechanisms of HtpB 112</p>
<p>6.4 Secretion Mechanisms Potentially Responsible for Transporting HtpB to Extracytoplasmic Locations 120</p>
<p>6.5 Identifying Functionally Important Amino Acid Positions in HtpB 124</p>
<p>6.6 Functional Evolution of HtpB 126</p>
<p>6.7 Concluding Remarks 127</p>
<p>References 129</p>
<p>Part 3.2 Peptidylprolyl Isomerases, Bacterial Virulence, and Targets for Therapy 135</p>
<p>7 An Overview of Peptidylprolyl Isomerases (PPIs) in Bacterial Virulence 137<br />Brian Henderson</p>
<p>7.1 Introduction 137</p>
<p>7.2 Proline and PPIs 137</p>
<p>7.3 Host PPIs and Responses to Bacteria and Bacterial Toxins 138</p>
<p>7.4 Bacterial PPIs as Virulence Factors 138</p>
<p>7.5 Other Bacterial PPIs Involved in Virulence 140</p>
<p>7.6 Conclusions 142</p>
<p>References 142</p>
<p>Part 3.3 Glyceraldehyde 3 ]Phosphate Dehydrogenase (GAPDH): A Multifunctional Virulence Factor 147</p>
<p>8 GAPDH: A Multifunctional Moonlighting Protein in Eukaryotes and Prokaryotes 149<br />Michael A. Sirover</p>
<p>8.1 Introduction 149</p>
<p>8.2 GAPDH Membrane Function and Bacterial Virulence 150</p>
<p>8.3 Role of Nitric Oxide in GAPDH Bacterial Virulence 153</p>
<p>8.4 GAPDH Control of Gene Expression and Bacterial Virulence 158</p>
<p>8.5 Discussion 160</p>
<p>Acknowledgements 162</p>
<p>References 162</p>
<p>9 Streptococcus pyogenes GAPDH: A Cell ]Surface Major Virulence Determinant 169<br />Vijay Pancholi</p>
<p>9.1 Introduction and Early Discovery 169</p>
<p>9.2 GAS GAPDH: A Major Surface Protein with Multiple Binding Activities 170</p>
<p>9.3 AutoADP ]Ribosylation of SDH and Other Post ]Translational Modifications 172</p>
<p>9.4 Implications of the Binding of SDH to Mammalian Proteins for Cell Signaling and Virulence Mechanisms 173</p>
<p>9.5 Surface Export of SDH/GAPDH: A Cause or Effect? 178</p>
<p>9.6 SDH: The GAS Virulence Factor ]Regulating Virulence Factor 180</p>
<p>9.7 Concluding Remarks and Future Perspectives 183</p>
<p>References 183</p>
<p>10 Group B Streptococcus GAPDH and Immune Evasion 195<br />Paula Ferreira and Patrick Trieu ]Cuot</p>
<p>10.1 The Bacterium GBS 195</p>
<p>10.2 Neonates are More Susceptible to GBS Infection than Adults 195</p>
<p>10.3 IL ]10 Production Facilitates Bacterial Infection 196</p>
<p>10.4 GBS Glyceraldehyde ]3 ]Phosphate Dehydrogenase Induces IL ]10 Production 197</p>
<p>10.5 Summary 199</p>
<p>References 200</p>
<p>11 Mycobacterium tuberculosis Cell ]Surface GAPDH Functions as a Transferrin Receptor 205<br />Vishant M. Boradia, Manoj Raje, and Chaaya Iyengar Raje</p>
<p>11.1 Introduction 205</p>
<p>11.2 Iron Acquisition by Bacteria 206</p>
<p>11.3 Iron Acquisition by Intracellular Pathogens 207</p>
<p>11.4 Iron Acquisition by M. tb 208</p>
<p>11.5 Glyceraldehyde ]3 ]Phosphate Dehydrogenase (GAPDH) 210</p>
<p>11.6 Macrophage GAPDH and Iron Uptake 210</p>
<p>11.7 Mycobacterial GAPDH and Iron Uptake 212</p>
<p>11.8 Conclusions and Future Perspectives 216</p>
<p>Acknowledgements 218</p>
<p>References 219</p>
<p>12 GAPDH and Probiotic Organisms 225<br />Hideki Kinoshita</p>
<p>12.1 Introduction 225</p>
<p>12.2 Probiotics and Safety 225</p>
<p>12.3 Potential Risk of Probiotics 227</p>
<p>12.4 Plasminogen Binding and Enhancement of its Activation 228</p>
<p>12.5 GAPDH as an Adhesin 229</p>
<p>12.6 Binding Regions 232</p>
<p>12.7 Mechanisms of Secretion and Surface Localization 234</p>
<p>12.8 Other Functions 235</p>
<p>12.9 Conclusion 236</p>
<p>References 237</p>
<p>Part 3.4 Cell ]Surface Enolase: A Complex Virulence Factor 245</p>
<p>13 Impact of Streptococcal Enolase in Virulence 247<br />Marcus Fulde and Simone Bergmann</p>
<p>13.1 Introduction 247</p>
<p>13.2 General Characteristics 248</p>
<p>13.3 Expression and Surface Exposition of Enolase 249</p>
<p>13.4 Streptococcal Enolase as Adhesion Cofactor 252</p>
<p>13.5 Enolase as Pro ]Fibrinolytic Cofactor 256</p>
<p>13.6 Streptococcal Enolase as Cariogenic Factor in Dental Disease 258</p>
<p>13.7 Conclusion 258</p>
<p>Acknowledgements 259</p>
<p>References 259</p>
<p>14 Streptococcal Enolase and Immune Evasion 269<br />Masaya Yamaguchi and Shigetada Kawabata</p>
<p>14.1 Introduction 269</p>
<p>14.2 Localization and Crystal Structure 271</p>
<p>14.3 Multiple Binding Activities of ]Enolase 273</p>
<p>14.4 Involvement of ]Enolase in Gene Expression Regulation 276</p>
<p>14.5 Role of Anti ] ]Enolase Antibodies in Host Immunity 277</p>
<p>14.6 ]Enolase as Potential Therapeutic Target 279</p>
<p>14.7 Questions Concerning ]Enolase 281</p>
<p>References 281</p>
<p>15 B. burgdorferi Enolase and Plasminogen Binding 291<br />Catherine A. Brissette</p>
<p>15.1 Introduction to Lyme Disease 291</p>
<p>15.2 Life Cycle 292</p>
<p>15.3 Borrelia Virulence Factors 292</p>
<p>15.4 Plasminogen Binding by Bacteria 293</p>
<p>15.5 B. burgdorferi and Plasminogen Binding 294</p>
<p>15.6 Enolase 295</p>
<p>15.7 B. burgdorferi Enolase and Plasminogen Binding 297</p>
<p>15.8 Concluding Thoughts 301</p>
<p>Acknowledgements 301</p>
<p>References 301</p>
<p>Part 3.5 Other Glycolytic Enzymes Acting as Virulence Factors 309</p>
<p>16 Triosephosphate Isomerase fromStaphylococcus aureus and Plasminogen Receptors on Microbial Pathogens 311<br />Reiko Ikeda and Tomoe Ichikawa</p>
<p>16.1 Introduction 311</p>
<p>16.2 Identification of Triosephosphate Isomerase on S. aureus as a Molecule that Binds to the Pathogenic Yeast C. neoformans 312</p>
<p>16.3 Binding of Triosephosphate Isomerase with Human Plasminogen 314</p>
<p>16.4 Plasminogen ]Binding Proteins on Trichosporon asahii 314</p>
<p>16.5 Plasminogen Receptors on C. neoformans 316</p>
<p>16.6 Conclusions 316</p>
<p>References 317</p>
<p>17 Moonlighting Functions of Bacterial Fructose 1,6 ]Bisphosphate Aldolases 321<br />Neil J Oldfield, Fariza Shams, Karl G Wooldridge, and David PJ Turner</p>
<p>17.1 Introduction 321</p>
<p>17.2 Fructose 1,6 ]bisphosphate Aldolase in Metabolism 321</p>
<p>17.3 Surface Localization of Streptococcal Fructose 1,6 ]bisphosphate Aldolases 322</p>
<p>17.4. Pneumococcal FBA Adhesin Binds Flamingo Cadherin Receptor 323</p>
<p>17.5 FBA is Required for Optimal Meningococcal Adhesion to Human Cells 324</p>
<p>17.6 Mycobacterium tuberculosis FBA Binds Human Plasminogen 325</p>
<p>17.7 Other Examples of FBAs with Possible Roles in Pathogenesis 326</p>
<p>17.8 Conclusions 327</p>
<p>References 327</p>
<p>Part 3.6 Other Metabolic Enzymes Functioning in Bacterial Virulence 333</p>
<p>18 Pyruvate Dehydrogenase Subunit B and Plasminogen Binding in Mycoplasma 335<br />Anne Gründel, Kathleen Friedrich, Melanie Pfeiffer, Enno Jacobs, and Roger Dumke</p>
<p>18.1 Introduction 335</p>
<p>18.2 Binding of Human Plasminogen to M. pneumoniae 337</p>
<p>18.3 Localization of PDHB on the Surface of M. pneumoniae Cells 340</p>
<p>18.4 Conclusions 343</p>
<p>References 344</p>
<p>Part 3.7 Miscellaneous Bacterial Moonlighting Virulence Proteins 349</p>
<p>19 Unexpected Interactions of Leptospiral Ef ]Tu and Enolase 351<br />Natália Salazar and Angela Barbosa</p>
<p>19.1 Leptospira Host Interactions 351</p>
<p>19.2 Leptospira Ef ]Tu 352</p>
<p>19.3 Leptospira Enolase 353</p>
<p>19.4 Conclusions 354</p>
<p>References 354</p>
<p>20 Mycobacterium tuberculosis Antigen 85 Family Proteins: Mycolyl Transferases and Matrix ]Binding Adhesins 357<br />Christopher P. Ptak, Chih ]Jung Kuo, and Yung ]Fu Chang</p>
<p>20.1 Introduction 357</p>
<p>20.2 Identification of Antigen 85 358</p>
<p>20.3 Antigen 85 Family Proteins: Mycolyl Transferases 359</p>
<p>20.4 Antigen 85 Family Proteins: Matrix ]Binding Adhesins 361</p>
<p>20.5 Conclusion 365</p>
<p>Acknowledgements 365</p>
<p>References 365</p>
<p>Part 3.8 Bacterial Moonlighting Proteins that Function as Cytokine Binders/Receptors 371</p>
<p>21 Miscellaneous IL ]1 ]Binding Proteins of Aggregatibacter actinomycetemcomitans 373<br />Riikka Ihalin</p>
<p>21.1 Introduction 373</p>
<p>21.2 A. actinomycetemcomitans Biofilms Sequester IL ]1 374</p>
<p>21.3 A. actinomycetemcomitans Cells Take in IL ]1 375</p>
<p>21.4 The Potential Effects of IL ]1 on A. actinomycetemcomitans 379</p>
<p>21.5 Conclusions 381</p>
<p>References 382</p>
<p>Part 3.9 Moonlighting Outside of the Box 387</p>
<p>22 Bacteriophage Moonlighting Proteins in the Control of Bacterial Pathogenicity 389<br />Janine Bowring, Alberto Marina, José R Penadés, and Nuria Quiles ]Puchalt</p>
<p>22.1 Introduction 389</p>
<p>22.2 Bacteriophage T4 I ]TevI Homing Endonuclease Functions as a Transcriptional Autorepressor 391</p>
<p>22.3 Capsid Psu Protein of Bacteriophage P4 Functions as a Rho Transcription Antiterminator 394</p>
<p>22.4 Bacteriophage Lytic Enzymes Moonlight as Structural Proteins 398</p>
<p>22.5 Moonlighting Bacteriophage Proteins De ]Repressing Phage ]Inducible Chromosomal Islands 398</p>
<p>22.6 dUTPase, a Metabolic Enzyme with a Moonlighting Signalling Role 401</p>
<p>22.7 Escherichia coli Thioredoxin Protein Moonlights with T7 DNA Polymerase for Enhanced T7 DNA Replication 404</p>
<p>22.8 Discussion 404</p>
<p>References 406</p>
<p>23 Viral Entry Glycoproteins and Viral Immune Evasion 413<br />Jonathan D. Cook and Jeffrey E. Lee</p>
<p>23.1 Introduction 413</p>
<p>23.2 Enveloped Viral Entry 414</p>
<p>23.3 Moonlighting Activities of Viral Entry Glycoproteins 415</p>
<p>23.4 Viral Entry Proteins Moonlighting as Saboteurs of Cellular Pathways 427</p>
<p>23.5 Conclusions 429</p>
<p>References 429</p>
<p>Index 439</p>

