Forensic Chemistry – Fundamentals and Applications
Fundamentals and Applications
Samenvatting
Forensic Chemistry: Fundamentals and Applications presents a new approach to the study of applications of chemistry to forensic science. It is edited by one of the leading forensic scientists with each chapter written by international experts specializing in their respective fields, and presents the applications of chemistry, especially analytical chemistry, to various topics that make up the forensic scientists toolkit.
This comprehensive, textbook includes in–depth coverage of the major topics in forensic chemistry including: illicit drugs, fibers, fire and explosive residues, soils, glass and paints, the chemistry of fingerprint recovery on porous surfaces, the chemistry of firearms analysis, as well as two chapters on the key tools of forensic science, microscopy and chemometrics. Each topic is explored at an advanced college level, with an emphasis, throughout the text, on the use of chemical tools in evidence analysis.
Forensic Chemistry: Fundamentals and Applications is essential reading for advanced students of forensic science and analytical chemistry, as well as forensic science practitioners, researchers and faculty, and anyone who wants to learn about the fascinating subject of forensic chemistry in some depth.
This book is published as part of the AAFS series Forensic Science in Focus .
Specificaties
Inhoudsopgave
<p>Contributors, xiii</p>
<p>Series preface, xv</p>
<p>Preface, xvi</p>
<p>1 Drugs of abuse, 1<br />Niamh Nic Daéid</p>
<p>1.1 Introduction, 1</p>
<p>1.2 Law and legislation, 2</p>
<p>1.3 Sampling, 4</p>
<p>1.3.1 Random sampling and representative sampling, 6</p>
<p>1.3.2 Arbitrary sampling, 7</p>
<p>1.3.3 Statistical sampling methods, 8</p>
<p>1.4 Specific drug types, 9</p>
<p>1.4.1 Cannabis, 9</p>
<p>1.4.2 Heroin, 14</p>
<p>1.4.3 Cocaine, 22</p>
<p>1.4.4 Amphetamine ]type stimulants, 27</p>
<p>1.4.5 New psychoactive substances, 33</p>
<p>1.5 Conclusions, 36</p>
<p>Acknowledgements, 36</p>
<p>References, 36</p>
<p>2 Textiles, 40<br />Max Houck</p>
<p>2.1 Introduction, 40</p>
<p>2.2 A science of reconstruction, 40</p>
<p>2.2.1 Classification, 41</p>
<p>2.2.2 Comparison, 42</p>
<p>2.2.3 Transfer and persistence, 43</p>
<p>2.3 Textiles, 43</p>
<p>2.3.1 Information, 44</p>
<p>2.3.2 Morphology, 45</p>
<p>2.4 Natural fibers, 48</p>
<p>2.4.1 Animal fibers, 48</p>
<p>2.4.2 Plant fibers, 51</p>
<p>2.5 Manufactured fibers, 52</p>
<p>2.6 Yarns and fabrics, 55</p>
<p>2.6.1 Fabric construction, 56</p>
<p>2.6.2 Finishes, 59</p>
<p>2.7 Fiber types, 59</p>
<p>2.7.1 Acetate, 59</p>
<p>2.7.2 Acrylic, 59</p>
<p>2.7.3 Aramids, 60</p>
<p>2.7.4 Modacrylic, 60</p>
<p>2.7.5 Nylon, 61</p>
<p>2.7.6 Olefins (polypropylene and polyethylene), 61</p>
<p>2.7.7 Polyester, 62</p>
<p>2.7.8 Rayon, 62</p>
<p>2.7.9 Spandex, 65</p>
<p>2.7.10 Triacetate, 66</p>
<p>2.7.11 Bicomponent fibers, 66</p>
<p>2.8 Chemistry, 67</p>
<p>2.8.1 General analysis, 67</p>
<p>2.8.2 Instrumental analysis, 68</p>
<p>2.8.3 Color, 69</p>
<p>2.8.4 Raman spectroscopy, 70</p>
<p>2.8.5 Interpretation, 71</p>
<p>2.9 The future, 72</p>
<p>References, 72</p>
<p>3 Paint and coatings examination, 75<br />Paul Kirkbride</p>
<p>3.1 Introduction, 75</p>
<p>3.2 Paint chemistry, 76</p>
<p>3.2.1 Binders, 76</p>
<p>3.2.2 Dyes and pigments, 86</p>
<p>3.2.3 Additives, 89</p>
<p>3.3 Automotive paint application, 91</p>
<p>3.4 Forensic examination of paint, 92</p>
<p>3.4.1 General considerations, 92</p>
<p>3.4.2 Microscopy, 95</p>
<p>3.4.3 Vibrational spectrometry, 96</p>
<p>3.4.4 SEM ]EDX and XRF, 106</p>
<p>3.4.5 Pyrolytic techniques, 111</p>
<p>3.4.6 Color analysis, 116</p>
<p>3.5 Paint evidence evaluation and expert opinion, 120</p>
<p>References, 128</p>
<p>Contents vii</p>
<p>4 Forensic fire debris analysis, 135<br />Reta Newman</p>
<p>4.1 Introduction, 135</p>
<p>4.2 Process overview, 135</p>
<p>4.3 Sample collection, 136</p>
<p>4.4 Ignitable liquid classification, 137</p>
<p>4.5 Petroleum ]based ignitable liquids, 144</p>
<p>4.6 Non ]petroleum ]based ignitable liquids, 160</p>
<p>4.7 Sample preparation, 161</p>
<p>4.8 Sample analysis and data interpretation, 166</p>
<p>4.9 Summary, 172</p>
<p>References, 173</p>
<p>5 Explosives, 175<br />John Goodpaster</p>
<p>5.1 The nature of an explosion, 175</p>
<p>5.1.1 Types of explosions, 175</p>
<p>5.1.2 Explosive effects, 176</p>
<p>5.2 Physical and chemical properties of explosives, 180</p>
<p>5.2.1 Low explosives, 181</p>
<p>5.2.2 High explosives, 186</p>
<p>5.3 Protocols for the forensic examination of explosives and explosive devices, 192</p>
<p>5.3.1 Recognition of evidence, 192</p>
<p>5.3.2 Portable technology and on ]scene analysis, 193</p>
<p>5.3.3 In the laboratory, 194</p>
<p>5.4 Chemical analysis of explosives, 200</p>
<p>5.4.1 Consensus standards (TWGFEX), 201</p>
<p>5.4.2 Chemical tests, 203</p>
<p>5.4.3 X ]ray techniques, 204</p>
<p>5.4.4 Spectroscopy, 207</p>
<p>5.4.5 Separations, 212</p>
<p>5.4.6 Gas chromatography, 213</p>
<p>5.4.7 Mass spectrometry, 215</p>
<p>5.4.8 Provenance and attribution determinations, 219</p>
<p>5.5 Ongoing research, 221</p>
<p>Acknowledgements, 222</p>
<p>References, 222</p>
<p>Further reading, 226</p>
<p>6 Analysis of glass evidence, 228<br />Jose Almirall and Tatiana Trejos</p>
<p>6.1 Introduction to glass examinations and comparisons, 228</p>
<p>6.2 Glass, the material, 231</p>
<p>6.2.1 Physical and chemical properties, 231</p>
<p>6.2.2 Manufacturing, 233</p>
<p>6.2.3 Fractures and their significance, 236</p>
<p>6.2.4 Forensic considerations: Transfer and persistence of glass, 238</p>
<p>6.3 A brief history of glass examinations, 241</p>
<p>6.4 Glass examinations and comparison, standard laboratory practices, 242</p>
<p>6.4.1 Physical measurements, 243</p>
<p>6.4.2 Optical measurements, 244</p>
<p>6.4.3 Chemical measurements: elemental analysis, 247</p>
<p>6.5 Interpretation of glass evidence examinations and comparisons, 256</p>
<p>6.5.1 Defining the match criteria, 256</p>
<p>6.5.2 Descriptive statistics, 256</p>
<p>6.5.3 Match criteria for refractive index measurements, 257</p>
<p>6.5.4 Informing power of analytical methods, forming the opinion, 260</p>
<p>6.5.5 Report writing and testimony, 262</p>
<p>6.6 Case examples, 263</p>
<p>6.6.1 Case 1: Hit ]and ]run case, 263</p>
<p>6.6.2 Case 2: Multiple transfer of glass in breaking ]and ]entry case, 264</p>
<p>6.7 Conclusions, 265</p>
<p>References, 266</p>
<p>7 The forensic comparison of soil and geologic microtraces, 273<br />Richard E. Bisbing</p>
<p>7.1 Soil and geologic microtraces as trace evidence, 273</p>
<p>7.2 Comparison process, 274</p>
<p>7.3 Developing expertise, 278</p>
<p>7.4 Genesis of soil, 279</p>
<p>7.5 Genesis of geologic microtraces, 284</p>
<p>7.6 Collecting questioned samples of unknown origin, 287</p>
<p>7.7 Collecting soil samples of known origin, 288</p>
<p>7.8 Initial comparisons, 290</p>
<p>7.9 Color comparison, 290</p>
<p>7.10 Texture comparison, 293</p>
<p>7.11 Mineral comparison, 297</p>
<p>7.12 Modal analysis, 301</p>
<p>7.13 Automated instrumental modal analysis, 308</p>
<p>7.14 Ecological constituents, 310</p>
<p>7.15 Anthropogenic constituents, 312</p>
<p>7.16 Reporting comparison results, 312</p>
<p>7.17 Future directions and research, 314</p>
<p>Acknowledgments, 314</p>
<p>References, 315</p>
<p>Further reading, 316</p>
<p>8 Chemical analysis for the scientific examination of questioned documents, 318<br />Gerald M. LaPorte</p>
<p>8.1 Static approach, 320</p>
<p>8.2 Dynamic approach, 324</p>
<p>8.3 Ink composition, 324</p>
<p>8.4 Examinations, 328</p>
<p>8.4.1 Physical examinations, 329</p>
<p>8.4.2 Optical examinations, 332</p>
<p>8.4.3 Chemical examinations, 333</p>
<p>8.4.4 Paper examinations, 339</p>
<p>8.5 Questioned documents, crime scenes and evidential considerations, 342</p>
<p>8.5.1 How was the questioned document produced?, 342</p>
<p>8.5.2 What evidence can be used to associate a questioned document with the crime scene and/or victim?, 343</p>
<p>8.5.3 Are there other forensic examinations that can be performed?, 345</p>
<p>8.5.4 Demonstrating that a suspect altered a document, 346</p>
<p>8.6 Interpreting results and rendering conclusions, 347</p>
<p>References, 350</p>
<p>9 Chemical methods for the detection of latent fingermarks, 354<br />Amanda A. Frick, Patrick Fritz, and Simon W. Lewis</p>
<p>9.1 Introduction, 354</p>
<p>9.2 Sources of latent fingermark residue, 355</p>
<p>9.2.1 Aqueous components, 356</p>
<p>9.2.2 Lipid components, 357</p>
<p>9.2.3 Sources of compositional variation, 359</p>
<p>9.3 Chemical processing of latent fingermarks, 361</p>
<p>9.3.1 Amino acid sensitive reagents, 361</p>
<p>9.3.2 Reagents based on colloidal metals, 370</p>
<p>9.3.3 Lipid ]sensitive reagents, 377</p>
<p>9.3.4 Other techniques, 383</p>
<p>9.4 Experimental considerations for latent fingermark chemistry research, 384</p>
<p>9.5 Conclusions and future directions, 387</p>
<p>Acknowledgements, 388</p>
<p>References, 388</p>
<p>Further reading, 398</p>
<p>10 Chemical methods in firearms analysis, 400<br />Walter F. Rowe</p>
<p>10.1 Introduction, 400</p>
<p>10.2 Basic firearms examination, 400</p>
<p>10.2.1 Cleaning bullets and cartridges, 402</p>
<p>10.2.2 Analysis of bullet lead, 404</p>
<p>10.2.3 Serial number restoration, 406</p>
<p>10.3 Shooting incident reconstruction, 408</p>
<p>10.3.1 Muzzle ]to ]target determinations, 411</p>
<p>10.3.2 Firearm primers, 416</p>
<p>10.3.3 Collection of gunshot residue, 425</p>
<p>10.4 Conclusion, 433</p>
<p>References, 433</p>
<p>11 Forensic microscopy, 439<br />Christopher S. Palenik</p>
<p>11.1 The microscope as a tool, 439</p>
<p>11.2 Motivation, 440</p>
<p>11.2.1 Intimidation, 442</p>
<p>11.2.2 Limitations, 442</p>
<p>11.3 Scale, 442</p>
<p>11.3.1 Scale and magnification, 443</p>
<p>11.3.2 Noting scale, 443</p>
<p>11.3.3 Analytical volume and limits of detection, 443</p>
<p>11.4 Finding, 445</p>
<p>11.4.1 Spatial resolution, 445</p>
<p>11.4.2 Recovery resolution, 447</p>
<p>11.4.3 Stereomicroscope, 447</p>
<p>11.5 Preparing, 448</p>
<p>11.5.1 Preservation and documentation, 448</p>
<p>11.5.2 Isolation, 450</p>
<p>11.5.3 Mounting, 451</p>
<p>11.6 Looking, 455</p>
<p>11.6.1 Light microscopy, 456</p>
<p>11.6.2 Scanning electron microscopy, 457</p>
<p>11.7 Analyzing, 458</p>
<p>11.7.1 Polarized light microscopy, 458</p>
<p>11.7.2 Energy dispersive X ]ray spectroscopy, 462</p>
<p>11.7.3 FTIR and Raman spectroscopy, 464</p>
<p>11.7.4 Other methods, 465</p>
<p>11.8 Thinking, 465</p>
<p>11.9 Thanking, 467</p>
<p>References, 467</p>
<p>12 Chemometrics, 469<br />Ruth Smith</p>
<p>12.1 Introduction, 469</p>
<p>12.2 Chromatograms and spectra as multivariate data, 470</p>
<p>12.3 Data preprocessing, 470</p>
<p>12.3.1 Baseline correction, 471</p>
<p>12.3.2 Smoothing, 473</p>
<p>12.3.3 Retention ]time alignment, 473</p>
<p>12.3.4 Normalization and scaling, 475</p>
<p>12.4 Unsupervised pattern recognition, 477</p>
<p>12.4.1 Hierarchical cluster analysis, 478</p>
<p>12.4.2 Principal components analysis, 480</p>
<p>12.5 Supervised pattern recognition procedures, 485</p>
<p>12.5.1 k ]Nearest neighbors, 486</p>
<p>12.5.2 Discriminant analysis, 487</p>
<p>12.5.3 Soft independent modeling of class analogy, 492</p>
<p>12.5.4 Model validation, 493</p>
<p>12.6 Applications of chemometric procedures in forensic science, 494</p>
<p>12.6.1 Fire debris and explosives, 495</p>
<p>12.6.2 Controlled substances and counterfeit medicines, 496</p>
<p>12.6.3 Trace evidence, 497</p>
<p>12.6.4 Impression evidence, 499</p>
<p>12.7 Conclusions, 499</p>
<p>Acknowledgements, 500</p>
<p>References, 500</p>
<p>Index, 504</p>

