, , , e.a.

Open Microfluidics

Specificaties
Gebonden, 336 blz. | Engels
John Wiley & Sons | e druk, 2016
ISBN13: 9781118720806
Rubricering
John Wiley & Sons e druk, 2016 9781118720806
Verwachte levertijd ongeveer 9 werkdagen

Specificaties

ISBN13:9781118720806
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:336

Inhoudsopgave

<p>Acknowledgements xi</p>
<p>Preface xiii</p>
<p>Online Materials xv</p>
<p>Introduction 1</p>
<p>1 Theory of Spontaneous Capillary Flows 13</p>
<p>1.1 Introduction 13</p>
<p>1.2 Quasi–static Approach to SCF 16</p>
<p>1.2.1 Open and Confined Systems 17</p>
<p>1.2.2 Theoretical Approach 17</p>
<p>1.2.3 Numerical Approach 21</p>
<p>1.2.3.1 Numerical Verification of the Capillary Force 22</p>
<p>1.2.3.2 Composite Confined Channel 22</p>
<p>1.2.3.3 Composite Open Channel 23</p>
<p>1.2.3.4 Fiber Bundle 24</p>
<p>1.2.3.5 Usual Geometries 27</p>
<p>1.2.3.6 Conclusion 27</p>
<p>1.2.4 Dynamic Aspects 27</p>
<p>1.2.4.1 Generalization of the Lucas–Washburn–Rideal Law to Composite, Confined Microchannels of Arbitrary Cross–section 30</p>
<p>1.2.4.2 Theory 30</p>
<p>1.2.4.3 Magnitude of Capillary Velocities 36</p>
<p>1.2.4.4 Experimental Results for Confined Channels 38</p>
<p>1.2.4.5 Conclusion 39</p>
<p>1.3 The Dynamics of Spontaneous Capillary Flows in Open–surface Channels 40</p>
<p>1.3.1 The Dynamics of SCF 40</p>
<p>1.3.2 Confined Rectangular Channels 42</p>
<p>1.3.3 Open Rectangular U–grooves 44</p>
<p>1.3.4 Suspended Rectangular Channels 45</p>
<p>1.3.5 Experiments 46</p>
<p>1.3.6 Comparison 46</p>
<p>1.4 Dynamic Contact Angle 49</p>
<p>1.5 Conclusion 53</p>
<p>1.6 References 53</p>
<p>2 Capillary Filaments 57</p>
<p>2.1 Introduction 57</p>
<p>2.2 Concus–Finn Theory 57</p>
<p>2.2.1 Numerical Approach 60</p>
<p>2.2.2 Example of Capillary Filaments in a Micro–beaker 60</p>
<p>2.2.3 Example of a Capillary Filament in a Micro Petri Dish 60</p>
<p>2.2.4 Extended Concus–Finn Relation 62</p>
<p>2.2.5 Capillary Filaments in a Non–ideal Corner 63</p>
<p>2.3 Capillary Filaments in Rectangular U–grooves 65</p>
<p>2.3.1 Capillary Flow Regimes with No Capillary Filaments ( &gt; 45&deg;) 66</p>
<p>2.3.2 Capillary Flow Regimes with Capillary Filaments ( &lt;45&deg;) 66</p>
<p>2.3.2.1 SCF Self–dividing into Filaments 67</p>
<p>2.3.2.2 Initially Separated Concus–Finn Filaments 69</p>
<p>2.3.2.3 Metastability of CF Filaments 70</p>
<p>2.3.2.4 Discussion 72</p>
<p>2.3.2.5 Imperfect Grooves 73</p>
<p>2.3.3 Example of a Varying Cross–sectional Area Channel 73</p>
<p>2.4 Capillary Filaments in V–grooves 74</p>
<p>2.4.1 Perfect V–grooves 74</p>
<p>2.4.2 Imperfect V–grooves 75</p>
<p>2.4.3 Parallel V–grooves 77</p>
<p>2.4.4 Imperfect Groovy Surface 79</p>
<p>2.5 Examples of Capillary Filaments 81</p>
<p>2.5.1 Capillary Filling of PCR Devices 82</p>
<p>2.5.2 Whole Blood Capillary Flow in V–grooves 82</p>
<p>2.6 Conclusions 85</p>
<p>2.7 References 86</p>
<p>Appendix 2.1 Capillary Flow in a Cylindrical Cavity 88</p>
<p>3 Spontaneous Capillary Flows in Open U–grooves 91</p>
<p>3.1 Introduction: SCF in Open U–grooves 91</p>
<p>3.2 Quasi–static Approach 92</p>
<p>3.3 Bulk SCF in Uniform Cross–section U–grooves 93</p>
<p>3.3.1 Single Wall Wettability 93</p>
<p>3.3.1.1 Theoretical Approach 93</p>
<p>3.3.1.2 Evolver Numerical Approach 97</p>
<p>3.3.2 Composite Walls 97</p>
<p>3.3.2.1 Rectangular Open Channel 98</p>
<p>3.3.2.2 Trapezoidal Open Channel 99</p>
<p>3.3.2.3 Roll–embossed Channel 100</p>
<p>3.4 Slightly Pressurized Open–surface Capillary Flow 100</p>
<p>3.5 SCF in Winding Channels 102</p>
<p>3.5.1 SCF in Winding, Open Channels, &gt; 45&deg; 103</p>
<p>3.5.2 Concus–Finn Filaments in Sharp Curves, &gt; 45&deg; 103</p>
<p>3.6 Extrapolation to the Coiling of the Flow Around a Curved Corner 104</p>
<p>3.7 Converging U–channels 105</p>
<p>3.8 Diverging U–channels 105</p>
<p>3.8.1 No CF Filaments 106</p>
<p>3.8.2 CF Filaments 108</p>
<p>3.9 U–groove with a Sudden Enlargement 108</p>
<p>3.9.1 Smooth Enlargement 109</p>
<p>3.9.2 Enlargement with Sharp Edges 110</p>
<p>3.9.3 U–groove Exiting into a Cylinder 112</p>
<p>3.9.4 U–groove Crossing a Polygonal Cavity 113</p>
<p>3.10 Open Capillary Valves 114</p>
<p>3.10.1 Capillary Stop Valves 114</p>
<p>3.10.2 Trigger Valves 115</p>
<p>3.11 Bifurcation 116</p>
<p>3.12 Capillary Filtration 118</p>
<p>3.13 Capillary Flow Mixing 119</p>
<p>3.14 Generalization: Substrate Patterned with Parallel Rectangular U–grooves 119</p>
<p>3.14.1 Substrate Patterned with U–grooves 119</p>
<p>3.14.2 Open, Rectangular U–groove with Sub–grooves in the Bottom Plate 120</p>
<p>3.14.3 Applications 121</p>
<p>3.15 Conclusion 121</p>
<p>3.16 References 122</p>
<p>4 Dynamics of Capillary Flow in a Channel with Constrictions and Enlargements 125</p>
<p>4.1 Introduction 125</p>
<p>4.2 Channel Constriction and Enlargement 126</p>
<p>4.2.1 Theory 126</p>
<p>4.2.2 Numerical Results and Discussion 130</p>
<p>4.2.2.1 Straight Channel 131</p>
<p>4.2.2.2 Channel with a Constricted Section 131</p>
<p>4.2.2.3 Channel with an Enlarged Section 132</p>
<p>4.2.3 Experimental Results 134</p>
<p>4.2.3.1 Constriction 135</p>
<p>4.2.3.2 Enlargement 136</p>
<p>4.2.4 Conclusion 137</p>
<p>4.3 SCF in a U–groove with Multiple Change of Cross–section 137</p>
<p>4.3.1 Theoretical Approach 138</p>
<p>4.3.2 Experimental Approach 140</p>
<p>4.3.2.1 Winding Open Rectangular U–groove 140</p>
<p>4.3.2.2 Open Rectangular U–groove with Constricted Sections 141</p>
<p>4.3.2.3 Open Rectangular U–groove with Cylindrical Chambers 144</p>
<p>4.3.3 Comparison with the Numerical Approach 145</p>
<p>4.4 Conclusion 146</p>
<p>4.5 References 149</p>
<p>Appendix 4.1 Velocity Model for Open Rectangular Channels 150</p>
<p>Appendix 4.2 Velocity Model for Cylindrical Tubes 152</p>
<p>Appendix 4.3 Friction in a Rectangular Open Channel 155</p>
<p>5 Suspended Capillary Flows 157</p>
<p>5.1 Introduction 157</p>
<p>5.2 Theory 158</p>
<p>5.3 Quasi–static Numerical Approach 159</p>
<p>5.3.1 Effect of Gravity 162</p>
<p>5.4 Dynamic Approach 162</p>
<p>5.4.1 Closed–form Expression of the Velocity for Newtonian Fluids 162</p>
<p>5.4.2 Channel Characteristics Corresponding to Maximum Velocities 164</p>
<p>5.4.3 Examples from Experiments 166</p>
<p>5.4.3.1 Suspended Channel Fabrication 167</p>
<p>5.4.3.2 Preparation of the Solutions and Liquid Characterization 168</p>
<p>5.4.3.3 Tinted Water 168</p>
<p>5.4.3.4 IPA Solutions 169</p>
<p>5.4.3.5 Whole Blood 169</p>
<p>5.4.3.6 Alginate Solutions 171</p>
<p>5.5 Comparison of a U–channel and a Suspended Channel 174</p>
<p>5.6 Suspended Microfluidics in Channels of Varying Section 175</p>
<p>5.6.1 Diverging Straight Walls 175</p>
<p>5.6.2 Sudden Enlargement of Suspended Channels 179</p>
<p>5.6.2.1 Quasi–static Approach 179</p>
<p>5.6.2.2 Dynamic Approach 183</p>
<p>5.6.3 Converging Suspended Channels 183</p>
<p>5.6.4 X–shape Suspended Channels 184</p>
<p>5.7 Capillary Flow in a Suspended Tapering Channel 186</p>
<p>5.8 Suspended Microfluidics in Suspended V–shaped Channels 188</p>
<p>5.9 Capillary Flow Over a Hole 189</p>
<p>5.10 Introduction to Two–phase Suspended Microflows 191</p>
<p>5.10.1 Parallel Walls 194</p>
<p>5.10.2 Tapered Walls 197</p>
<p>5.10.2.1 Converging Channel 197</p>
<p>5.10.2.2 Diverging Channel 198</p>
<p>5.10.3 Examples and Applications of Suspended Microfluidics 199</p>
<p>5.10.3.1 Formation of Dots 199</p>
<p>5.10.3.2 Towards a Giant Polymeric Micromembrane 201</p>
<p>5.10.3.3 Suspended Microfluidics for Measurement of Contact Angles 201</p>
<p>5.11 Conclusion 203</p>
<p>5.12 References 203</p>
<p>6 Spontaneous Capillary Flow Between Horizontal Rails 207</p>
<p>6.1 Introduction 207</p>
<p>6.2 Spontaneous Capillary Flows Between Rails 209</p>
<p>6.3 Winding Channels 210</p>
<p>6.4 Diverging Rails 211</p>
<p>6.5 Rails with Lateral Enlargement 212</p>
<p>6.6 Converging Rails 212</p>
<p>6.7 Rails with Constriction 212</p>
<p>6.8 Stopping a Capillary Flow at a Neck 213</p>
<p>6.9 SCF in Sinusoidal Railed Channels 215</p>
<p>6.10 Divisions and Bifurcations 217</p>
<p>6.10.1 Flow Separation 217</p>
<p>6.10.2 Flow Around a Hole 217</p>
<p>6.10.2.1 Two Plates Pierced by a Hole 218</p>
<p>6.10.2.2 Bottom Plate Pierced by a Hole 221</p>
<p>6.10.2.3 Rails Around a Hole 221</p>
<p>6.10.3 Capillary Flow Around Pillars 224</p>
<p>6.10.3.1 Single Pillar 224</p>
<p>6.10.3.2 Multiple Pillars 225</p>
<p>6.11 Conclusion 227</p>
<p>6.12 References 227</p>
<p>7 Paper–based Microfluidics 229</p>
<p>7.1 Introduction 229</p>
<p>7.2 Principles of Labs–on–Paper and Paper–based Devices 230</p>
<p>7.3 Paper–based Microfluidics 231</p>
<p>7.3.1 Spontaneous Imbibition–wicking 231</p>
<p>7.3.2 Fully Wetted Medium Darcy s law 234</p>
<p>7.3.3 Velocity in Paper Strips of Piecewise Varying Width 236</p>
<p>7.3.4 Filtration and Separation 237</p>
<p>7.3.5 Mixing 238</p>
<p>7.3.6 Y–junctions 240</p>
<p>7.3.7 Hydrodynamic Focusing 241</p>
<p>7.3.8 H–filters: Separation and Extraction 242</p>
<p>7.3.9 Valves 243</p>
<p>7.3.10 Architecture for Time Sequencing 244</p>
<p>7.3.11 3D paths Fluidic Origamis 244</p>
<p>7.3.12 Electrokinetics on Paper 244</p>
<p>7.4 Paper–based Systems Fabrication and Detection 245</p>
<p>7.4.1 Fabrication Techniques of Paper Strips 246</p>
<p>7.4.2 Fabrication Techniques of PADs 247</p>
<p>7.4.2.1 Hydrophobic Barrier 247</p>
<p>7.4.2.2 Hydrophobization of the Substrate 247</p>
<p>7.4.3 Functionalization and Loading of Reagents 249</p>
<p>7.4.4 Detection 249</p>
<p>7.4.4.1 Colorimetry 249</p>
<p>7.4.4.2 Electrochemistry(EC) 250</p>
<p>7.4.4.3 Chemiluminescence 251</p>
<p>8 Fiber–based Microfluidics 257</p>
<p>8.1 Introduction 257</p>
<p>8.2 Droplet on Fibers 259</p>
<p>8.2.1 Droplet on a Horizontal Fiber 259</p>
<p>8.2.2 Small Droplet 260</p>
<p>8.2.2.1 Effect of Gravity on Small Droplets 261</p>
<p>8.2.2.2 Large Droplet 261</p>
<p>8.2.3 Droplet Between Fibers 263</p>
<p>8.2.3.1 Droplet Between Two Parallel Fibers 263</p>
<p>8.2.3.2 Non–parallel Fibers in the Same Plane 264</p>
<p>8.2.3.3 Drop Between Two Fibers General Case 265</p>
<p>8.2.3.4 Droplet Sliding Down a Fiber 266</p>
<p>8.3 SCF Guided by Fibers 268</p>
<p>8.3.1 Approximate General Condition for Spontaneous Capillary Flow in a Fiber Bundle 268</p>
<p>8.3.2 Geometrical Study: SCF Guided by Fibers 270</p>
<p>8.3.2.1 Homogeneous Bundle 271</p>
<p>8.3.2.2 Inhomogeneous Bundles 273</p>
<p>8.3.2.3 Numerical Example 279</p>
<p>8.3.2.4 Packed Bundle 281</p>
<p>8.3.2.5 Generalization to Large Bundles 282</p>
<p>8.3.2.6 Influence of the Parameter C=R 282</p>
<p>8.3.2.7 Conclusion 282</p>
<p>8.4 Examples of Microfluidics on Fibers 284</p>
<p>8.5 Electrochemical Detection on Fibers 284</p>
<p>8.6 Applications in Biology 285</p>
<p>8.6.1 Blood Typing Diagnostics 285</p>
<p>8.6.2 Woven Fibers 286</p>
<p>8.6.3 Smart Bandages 286</p>
<p>8.6.4 Smart Textiles 288</p>
<p>8.7 Capillary Rise in Fibers 288</p>
<p>8.7.1 Cylindrical Tubes: Jurin s law 288</p>
<p>8.7.2 Capillary Rise Between Pillars 291</p>
<p>8.7.2.1 Capillary Rise in a Bundle of Four Vertical Square Pillars 291</p>
<p>8.7.2.2 Comparison of Capillary Rise Between a Wilhelmy Plate and Pillars 292</p>
<p>8.7.2.3 Comparison of Capillary Rise Between a Single Rod and a Bundle of Packed Rods 294</p>
<p>8.8 Conclusions 295</p>
<p>8.9 References 296</p>
<p>Appendix 8.1 Calculation of the Laplace Pressure for a Droplet on a</p>
<p>Horizontal Cylindrical Wire 298</p>
<p>Appendix 8.2 Perimeters 299</p>
<p>Appendix 8.3 Wonky Corners SCF 300</p>
<p>Appendix 8.4 Transition Between All Wetted and All But Corners Cases 301</p>
<p>9 Epilog 303</p>
<p>9.1 Open Microfluidics 303</p>
<p>9.2 References 305</p>
<p>Index 307</p>

Rubrieken

    Personen

      Trefwoorden

        Open Microfluidics