Nanomaterials in Drug Delivery, Imaging, and Tissu e Engineering

Specificaties
Gebonden, 576 blz. | Engels
John Wiley & Sons | e druk, 2013
ISBN13: 9781118290323
Rubricering
John Wiley & Sons e druk, 2013 9781118290323
Verwachte levertijd ongeveer 16 werkdagen

Samenvatting

This groundbreaking, multidisciplinary work is one of the first books to cover Nanotheragnostics, the new developmental edge of nanomedicine. Through a collection of authoritative chapters, the book reports on nanoscopic therapeutic systems that incorporate therapeutic agents, molecular targeting, and diagnostic imaging capabilities. An invaluable reference for researchers in materials science, bioengineering, pharmacy, biotechnology, and nanotechnology, this volume features four main parts on biomedical nanomaterials, advanced nanomedicine, nanotheragnostics, and nanoscaffolds technology.

Specificaties

ISBN13:9781118290323
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:576

Inhoudsopgave

Preface xv
<p>Part I: Biomedical nanomaterials</p>
<p>1&nbsp;Nanoemulsions: Preparation, Stability and Application in Biosciences&nbsp;1<br /> Thomas Delmas, Nicolas Atrux–Tallau, Mathieu Goutayer, SangHoon Han, Jin Woong Kim, and J&eacute;r&ocirc;me Bibette</p>
<p>1.1&nbsp;Introduction&nbsp;2</p>
<p>1.2&nbsp;Nanoemulsion:A Thermodynamic De nition and Its Practical Implications&nbsp;5</p>
<p>1.2.1&nbsp;Generalities on Emulsions&nbsp;5</p>
<p>1.2.2&nbsp;Nanoemulsion vs. Microemulsion, a Thermodynamic De nition&nbsp;6</p>
<p>1.3&nbsp;Stable Nanoemulsion Formulation&nbsp;9</p>
<p>1.3.1&nbsp;Nanoemulsion Production&nbsp;9</p>
<p>1.3.2&nbsp;Nanoemulsion Stability Rules&nbsp;11</p>
<p>1.3.3&nbsp;Nanoemulsion Formulation Domain&nbsp;16</p>
<p>1.3.4&nbsp;Conclusion on the Formulation of Stable Nanoemulsions&nbsp;21</p>
<p>1.4&nbsp;Nanoencapsulation in Lipid Nanoparticles&nbsp;21</p>
<p>1.4.1&nbsp;Aim ofActive Encapsulation&nbsp;21</p>
<p>1.4.2&nbsp;Lipid Complexity and In uence of Their Physical State&nbsp;23</p>
<p>1.4.3&nbsp;Amorphous Lipids for a Large Range of Encapsulated Molecules&nbsp;27</p>
<p>1.4.4&nbsp;Lipids Viscosity and Release&nbsp;31</p>
<p>1.4.5&nbsp;Conclusion on the Use ofAmorphous Lipid Matrices for Control OverActive Encapsulation and Release&nbsp;34</p>
<p>1.5&nbsp;Interactions between Nanoemulsions and the Biological Medium: Applications in Biosciences&nbsp;35</p>
<p>1.5.1&nbsp;Nanoemulsion Biocompatibility&nbsp;35</p>
<p>1.5.2&nbsp;Classical TargetingApproach by Chemical Grafting Example of Tumor Cell Targeting by Crgd Peptide for Cancer Diagnosis and Therapy&nbsp;38</p>
<p>1.5.3&nbsp;New No Synthesis Chemistry Approach Example of Pal–KTTKS andAsiaticoside Targeting for CosmeticActives Delivery&nbsp;41</p>
<p>1.5.4&nbsp;Conclusion on Nanoemulsions Application in Biosciences&nbsp;46</p>
<p>1.6&nbsp;General Conclusion&nbsp;47</p>
<p>References&nbsp;48</p>
<p>2&nbsp;Multifunctional Polymeric Nanostructures for Therapy and Diagnosis&nbsp;57<br /> Angel Contreras–Garc&iacute;a and Emilio Bucio</p>
<p>2.1&nbsp;Introduction&nbsp;58</p>
<p>2.2&nbsp;Polymeric–based Core–shell Colloid&nbsp;61</p>
<p>2.3&nbsp;Proteins and Peptides&nbsp;64</p>
<p>2.4&nbsp;Drug Conjugates and Complexes with Synthetic Polymers&nbsp;65</p>
<p>2.5&nbsp;Dendrimers, Vesicles, and Micelles&nbsp;67</p>
<p>2.5.1&nbsp;Dendrimers&nbsp;67</p>
<p>2.5.2&nbsp;Vesicles&nbsp;68</p>
<p>2.5.3&nbsp;Micelles&nbsp;70</p>
<p>2.6&nbsp;Smart Nanopolymers&nbsp;71</p>
<p>2.6.1&nbsp;Temperature and pH Stimuli–responsive Nanopolymers&nbsp;72</p>
<p>2.6.2&nbsp;Hydrogels&nbsp;72</p>
<p>2.6.3&nbsp;Stimuli Responsive Biomaterials&nbsp;73</p>
<p>2.6.4&nbsp;Interpenetrating Polymer Networks&nbsp;74</p>
<p>2.7&nbsp;Stimuli Responsive Polymer–metal Nanocomposites&nbsp; 75</p>
<p>2.8&nbsp;Enzyme–responsive Nanoparticles&nbsp;78</p>
<p>Acknowledgements&nbsp;83</p>
<p>References&nbsp;83</p>
<p>3&nbsp;Carbon Nanotubes: Nanotoxicity Testing and Bioapplications&nbsp;97<br /> R. Sharma and S. Kwon</p>
<p>3.1&nbsp;Introduction&nbsp;98</p>
<p>3.1.1&nbsp;What is Nanotoxicity of Nanomaterials?&nbsp;98</p>
<p>3.2&nbsp;Historical Review of Carbon Nanotube&nbsp;99</p>
<p>3.3&nbsp;Carbon Nanotubes (CNTs) and Other Carbon Nanomaterials&nbsp;100</p>
<p>3.3.1&nbsp;Physical Principles of Carbon Nanotube Surface Science&nbsp;102</p>
<p>3.4&nbsp;Motivation Combining Nanotechnology and Surface Science with Growing Bioapplications&nbsp;104</p>
<p>3.5&nbsp;Cytotoxicity Measurement and Mechanisms of CNT Toxicity&nbsp;111</p>
<p>3.1.6&nbsp;In Vivo Studies on CNT Toxicity&nbsp;113</p>
<p>3.1.7&nbsp;In ammatory Mechanism of CNT Cytoxicity&nbsp;114</p>
<p>3.1.8&nbsp;Characterization and Toxicity of SWCNT and MWCNT Carbon Nanotubes&nbsp;116</p>
<p>3.6&nbsp;MSCs Differentiation and Proliferation on Different Types of Scaffolds&nbsp;120</p>
<p>3.6.1&nbsp;An In Vivo Model CNT–Induced In ammatory Response in Alveolar Co–culture System&nbsp;122</p>
<p>3.6.2&nbsp;Static Model: 3–Dimensional Tissue Engineered Lung&nbsp;124</p>
<p>3.6.3&nbsp;Dynamic Model: Integration of 3D Engineered Tissues into Cyclic Mechanical Strain Device&nbsp;126</p>
<p>3.6.4&nbsp;In Vivo MR Microimaging Technique of Rat Skin Exposed to CNT&nbsp;127</p>
<p>3.7&nbsp;New Lessons on CNT Nanocomposites&nbsp;130</p>
<p>3.8&nbsp;Conclusions&nbsp;135</p>
<p>Part II: Advanced nanomedicine</p>
<p>4&nbsp;Discrete Metalla–Assemblies as Drug Delivery Vectors&nbsp;149<br /> Bruno Therrien</p>
<p>4.1&nbsp;Introduction&nbsp;149</p>
<p>4.2&nbsp;Complex–in–a–Complex Systems&nbsp;150</p>
<p>4.3&nbsp;Encapsulation of Pyrenyl–functionalized Derivatives 155</p>
<p>4.4&nbsp;Exploiting the Enhanced Permeability and Retention Effect&nbsp;159</p>
<p>4.5&nbsp;Incorporation of Photosensitizers in Metalla–assemblies&nbsp;162</p>
<p>4.6&nbsp;Conclusion&nbsp;165</p>
<p>Acknowledgments&nbsp;165</p>
<p>References&nbsp;166</p>
<p>5&nbsp;Nanomaterials for Management of Lung Disorders and Drug Delivery&nbsp;169<br /> Jyothi U. Menon, Aniket S. Wadajkar, Zhiwe iXie, and Kytai T. Nguyen</p>
<p>5.1&nbsp;Lung Structure and Physiology&nbsp;170</p>
<p>5.2&nbsp;Common Lung DiseasesAnd Treatment Methods&nbsp;171</p>
<p>5.2.1&nbsp;Lung Cancer&nbsp;171</p>
<p>5.2.2&nbsp;PulmonaryArterial Hypertension&nbsp;172</p>
<p>5.2.3&nbsp;Obstructive Lung Diseases&nbsp;173</p>
<p>5.3&nbsp;Types of Nanoparticles (NPs)&nbsp;173</p>
<p>5.3.1&nbsp;Liposomes&nbsp;174</p>
<p>5.3.2&nbsp;Micelles&nbsp;176</p>
<p>5.3.3&nbsp;Dendrimers&nbsp;177</p>
<p>5.3.4&nbsp;Polymeric Micro/Nanoparticles&nbsp;177</p>
<p>5.4&nbsp;Methods for Pulmonary Delivery&nbsp;179</p>
<p>5.4.1&nbsp;Nebulization&nbsp;179</p>
<p>5.4.2&nbsp;Metered Dose Inhalation (MDI)&nbsp;182</p>
<p>5.4.3&nbsp;Dry Powder Inhalation (DPI)&nbsp;183</p>
<p>5.4.4&nbsp;IntratrachealAdministration&nbsp;183</p>
<p>5.5&nbsp;Targeting Mechanisms&nbsp;184</p>
<p>5.5.1&nbsp;Passive Targeting&nbsp;184</p>
<p>5.5.2&nbsp;Active Targeting&nbsp;185</p>
<p>5.5.3&nbsp;Cellular Uptake Mechanisms&nbsp;188</p>
<p>5.6&nbsp;TherapeuticAgents Used for Delivery&nbsp;188</p>
<p>5.6.1&nbsp;ChemotherapeuticAgents&nbsp;188</p>
<p>5.6.2&nbsp;Bioactive Molecules&nbsp;190</p>
<p>5.6.3&nbsp;Combinational Therapy&nbsp;190</p>
<p>5.7&nbsp;Applications&nbsp;191</p>
<p>5.7.1&nbsp;Imaging/DiagnosticApplications&nbsp;191</p>
<p>5.7.2&nbsp;TherapeuticApplications&nbsp;193</p>
<p>5.7.3&nbsp;Lung Remodeling and Regeneration&nbsp;194</p>
<p>5.8&nbsp;Design Considerations of NPs&nbsp;195</p>
<p>5.8.1&nbsp;Half–life of NPs&nbsp;195</p>
<p>5.8.2&nbsp;Drug Release Mechanisms&nbsp;195</p>
<p>5.8.3&nbsp;Clearance Mechanisms in the Lung&nbsp;196</p>
<p>5.9&nbsp;Current Challenges and Future Outlook&nbsp;197</p>
<p>6&nbsp;Nano–Sized Calcium Phosphate (CaP) Carriers for Non–Viral Gene/Drug Delivery&nbsp;199<br /> Donghyun Lee, Geunseon Ahn and Prashant N. Kumta</p>
<p>6.1&nbsp;Introduction&nbsp;200</p>
<p>6.2&nbsp;Vectors for Gene Delivery&nbsp;202</p>
<p>6.2.1&nbsp;Viral Vectors&nbsp;203</p>
<p>6.2.2&nbsp;Non–viral Vectors&nbsp;203</p>
<p>6.2.3&nbsp;Calcium Phosphate Vectors&nbsp;205</p>
<p>6.3&nbsp;Modulation of Protection and Release Characteristics of Calcium Phosphate Vector&nbsp;213</p>
<p>6.4&nbsp;Calcium Phosphate Carriers for Drug Delivery Systems&nbsp;219</p>
<p>6.4.1&nbsp;Antibiotics Delivery&nbsp;219</p>
<p>6.4.2&nbsp;Growth Factor Delivery&nbsp;221</p>
<p>6.5&nbsp;Variants of Nano–calcium Phosphates: Future Trends of the CaPDelivery Systems&nbsp;221</p>
<p>Acknowledgements&nbsp;223</p>
<p>References&nbsp;223</p>
<p>7&nbsp;Organics Modi edMesoporous Silica for Controlled Drug Delivery Systems&nbsp;233<br /> Jingke Fu, Yang Zhao, Yingchun Zhu and Fang Chen</p>
<p>7.1&nbsp;Introduction&nbsp;233</p>
<p>7.2&nbsp;Controlled Drug Delivery Systems Based on Organics Modi ed</p>
<p>7.2.1&nbsp;MSNs–based Drug Delivery Systems Controlled by Physical Stimuli&nbsp;238</p>
<p>7.2.2&nbsp;MSNs–based Drug Delivery Systems Controlled by Chemical Stimuli&nbsp;246</p>
<p>7.3&nbsp;Conclusions&nbsp;258</p>
<p>References&nbsp;259</p>
<p>Part III: Nanotheragnostics</p>
<p>8&nbsp;Responsive Polymer–Inorganic Hybrid Nanogels for Optical Sensing, Imaging, and Drug Delivery&nbsp;263<br /> Weitai Wu and Shuiqin Zhou</p>
<p>8.1&nbsp;Introduction&nbsp;264</p>
<p>8.2&nbsp;Mechanisms of Response&nbsp;268</p>
<p>8.2.1&nbsp;Reception of an External Signal&nbsp;268</p>
<p>8.2.2&nbsp;Volume Phase Transition of the Hybrid Nanogels&nbsp;275</p>
<p>8.2.4&nbsp;Regulated Drug Delivery&nbsp;282</p>
<p>8.3&nbsp;Synthesis of Responsive Polymer–inorganic Hybrid Nanogels&nbsp;285</p>
<p>8.3.1&nbsp;Synthesis of the Hybrid Nanogels from Pre–synthesized Polymer Nanogels&nbsp;285</p>
<p>8.3.2&nbsp;Synthesis of the Hybrid Nanogels from Pre–synthesized Inorganic NPs&nbsp;289</p>
<p>8.3.3&nbsp;Synthesis of the Hybrid Nanogels by a Heterogeneous Polymerization Method&nbsp;292</p>
<p>8.4&nbsp;Applications&nbsp;293</p>
<p>8.4.1&nbsp;Responsive Polymer–inorganic Hybrid Nanogels in Optical Sensing&nbsp;293</p>
<p>8.4.2&nbsp;Responsive Polymer–inorganic Hybrid Nanogels in Diagnostic Imaging&nbsp;299</p>
<p>8.4.3&nbsp;Responsive Polymer–inorganic Hybrid Nanogels in Drug Delivery&nbsp;301</p>
<p>References&nbsp;306</p>
<p>9&nbsp;Core/Shell Nanoparticles for Drug Delivery and Diagnosis&nbsp;315<br /> Hwanbum Lee, Jae Yeon Kim, Eun Hee Lee, Young In Park, Keun Sang Oh, Kwangmeyung Kim, Ick Chan Kwonand Soon Hong Yuk</p>
<p>9.2&nbsp;Core/Shell NPs from Polymeric Micelles&nbsp;319</p>
<p>9.2.1&nbsp;Polymeric Micelles with Physical Drug Entrapment&nbsp;319</p>
<p>9.2.2&nbsp;Polymeric Micelles with Drug Conjugation&nbsp;321</p>
<p>9.2.3&nbsp;Polymeric Micelles Formed by Temperature–Induced Phase Transition&nbsp;323</p>
<p>9.3&nbsp;Phospholipid–based Core/Shell Nanoparticles&nbsp;325</p>
<p>9.4&nbsp;Layer–by–Layer–Assembled Core/Shell Nanoparticles&nbsp;329</p>
<p>9.5&nbsp;Core/Shell NPs for Diagnosis&nbsp;330</p>
<p>9.4&nbsp;Conclusions&nbsp;331</p>
<p>Acknowledgments&nbsp;331</p>
<p>References&nbsp;331</p>
<p>10&nbsp;Dendrimer Nanoparticles and Their Applications in Biomedicine&nbsp;339<br /> Arghya Paul, Wei Shao, Tom J. Burdon, Dominique Shum–Tim and Satya Prakash</p>
<p>10.1&nbsp; Introduction&nbsp;340</p>
<p>10.2&nbsp; Dendrimers and Their Characteristics&nbsp;341</p>
<p>10.3&nbsp; Biomolecular Interactions of Dendrimer Nanocomplexes&nbsp;343</p>
<p>10.3.1&nbsp; Genes (siRNA/ANS/DNA)&nbsp;344</p>
<p>10.3.2&nbsp; Drugs and Pharmaceutics&nbsp;345</p>
<p>10.4&nbsp; PotentialApplications of Dendrimer in Nanomedicine&nbsp;347</p>
<p>10.4.1&nbsp; Delivery of Chemotherapeutics&nbsp;347</p>
<p>10.4.2&nbsp; Delivery of Biomolecules&nbsp;348</p>
<p>10.4.3&nbsp; Imaging&nbsp;350</p>
<p>10.5&nbsp; Conclusion&nbsp;353</p>
<p>Acknowledgements&nbsp;355</p>
<p>Indexing words&nbsp;355</p>
<p>References&nbsp;355</p>
<p>11&nbsp;Theranostic Nanoparticles for Cancer Imaging and Therapy&nbsp;363<br /> Mami Murakami, Mark J. Ernsting and Shyh–Dar Li</p>
<p>11.1&nbsp; Introduction&nbsp;363</p>
<p>11.2&nbsp; Multifunctional Nanoparticles for Noninvasive</p>
<p>11.2.1 Radiolabeled Nanoparticles 366</p>
<p>11.2.2&nbsp;Fluorescence Imaging of Biodistribution&nbsp;367</p>
<p>11.2.3&nbsp;Multimodal Radiolabel and Fluorescence Imaging of Biodistribution&nbsp;368</p>
<p>11.2.4&nbsp;MRI Imaging of Biodistribution&nbsp;369</p>
<p>11.2.5&nbsp;Multimodal MRI and Fluorescence Imaging of Biodistribution&nbsp;371</p>
<p>11.2.6&nbsp;Multimodal Optical and CT Imaging of Biodistribution&nbsp;372</p>
<p>11.2.7&nbsp;Pharmacokinetics and Pharmacodynamics of Theranostics vs Diagnostics&nbsp;373</p>
<p>11.3&nbsp; Multifunctional Nanoparticles for Monitoring Drug Release&nbsp;375</p>
<p>11.3.1&nbsp;MRI imaging of Drug Release&nbsp;375</p>
<p>11.3.2&nbsp;Fluorescent Imaging of Drug Release&nbsp;379</p>
<p>11.4&nbsp; Theranostics to Image Therapeutic Response&nbsp;380</p>
<p>11.5&nbsp; Conclusion and Future Directions&nbsp;382</p>
<p>Acknowledgement&nbsp;383</p>
<p>References&nbsp;383</p>
<p>Part IV: Nanoscaffolds technology</p>
<p>12&nbsp;Nanostructure Polymers in Function Generating Substitute and Organ Transplants&nbsp;389<br /> S.K. Shukla</p>
<p>12.1&nbsp; Introduction&nbsp;389</p>
<p>12.2&nbsp; Important Nanopolymers&nbsp;391</p>
<p>12.2.1&nbsp;Hydrogels&nbsp;393</p>
<p>12.2.2&nbsp;Bioceramics&nbsp;394</p>
<p>12.2.3&nbsp;Bioelastomers&nbsp;395</p>
<p>12.2.4&nbsp;Chitosan and Derivatives&nbsp;396</p>
<p>12.2.5&nbsp;Gelatine&nbsp;396</p>
<p>12.3&nbsp; MedicalApplications&nbsp;397</p>
<p>12.3.1&nbsp;Tissue Engineering for Function Generating&nbsp;398</p>
<p>12.3.2 Tissue Engineering inArti cial Heart&nbsp;400</p>
<p>12.3.3&nbsp;Tissue Engineering in Nervous System&nbsp;401</p>
<p>12.3.4&nbsp;Bone Transplants&nbsp;404</p>
<p>12.3.5&nbsp;Kidney and Membrane Transplants&nbsp;406</p>
<p>12.3.6&nbsp;Miscellaneous&nbsp;409</p>
<p>Acknowledgement&nbsp;411</p>
<p>References&nbsp;411</p>
<p>13&nbsp;Electrospun Nano berfor Three Dimensional Cell Culture&nbsp;417<br /> Yashpal Sharma, Ashutosh Tiwari and Hisatoshi Kobayashi</p>
<p>13.1&nbsp; Introduction&nbsp;417</p>
<p>13.2&nbsp; Nano ber Scaffolds Fabrication Techniques&nbsp;419</p>
<p>13.2.1&nbsp;Self–Assembly&nbsp;419</p>
<p>13.2.2&nbsp;Phase Separation&nbsp;421</p>
<p>13.2.3&nbsp;Electrospinning&nbsp;422</p>
<p>13.3&nbsp; Parameters of Electrospinning Process&nbsp;424</p>
<p>13.3.1&nbsp;Viscosity or Concentration of the Polymeric Solution&nbsp;424</p>
<p>13.3.2&nbsp;Conductivity and the Charge Density&nbsp;425</p>
<p>13.3.3&nbsp;Molecular Weight of Polymer&nbsp;425</p>
<p>13.3.4&nbsp;Flow Rate&nbsp;425</p>
<p>13.3.5&nbsp;Distance from Tip to Collector&nbsp;425</p>
<p>13.3.6&nbsp;VoltageApplied&nbsp;426</p>
<p>13.3.7&nbsp;Environmental Factors&nbsp;426</p>
<p>13.4&nbsp; Electrospun Nano bers for Three–dimensional Cell Culture&nbsp;426</p>
<p>13.5&nbsp; Conclusions&nbsp;429</p>
<p>References&nbsp;431</p>
<p>14&nbsp;Magnetic Nanoparticles in Tissue Regeneration&nbsp;435<br /> Anuj Tripathi, Jose Savio Melo and Stanislaus Francis D Souza</p>
<p>14.1&nbsp; Introduction&nbsp;435</p>
<p>14.2&nbsp; Magnetic Nanoparticles: Physical Properties&nbsp;438</p>
<p>14.3&nbsp; Synthesis of Magnetic Nanoparticles&nbsp;440</p>
<p>14.4&nbsp; Design and Structure of Magnetic Nanoparticles&nbsp;443</p>
<p>14.5&nbsp; Stability and Functionalization of Magnetic Nanoparticles&nbsp;445</p>
<p>14.6&nbsp; Cellular Toxicity of Magnetic Nanoparticles&nbsp;450</p>
<p>14.7&nbsp; Tissue EngineeringApplications of Magnetic Nanoparticles&nbsp;453</p>
<p>14.7.1&nbsp;Magnetofection&nbsp;455</p>
<p>14.7.2&nbsp;Cell–patterning&nbsp;458</p>
<p>14.7.3&nbsp;Magnetic Force–induced Tissue Fabrication&nbsp;461</p>
<p>14.8&nbsp; Challenges and Future Prospects&nbsp;473</p>
<p>Acknowledgement&nbsp;474</p>
<p>References&nbsp;474</p>
<p>15&nbsp;Core–sheath Fibersfor Regenerative Medicine&nbsp;485<br /> Rajesh Vasita and Fabrizio Gelain</p>
<p>15.1&nbsp; Introduction&nbsp;486</p>
<p>15.1.1&nbsp;Tissue Engineering&nbsp;487</p>
<p>15.1.2&nbsp;Scaffold Fabrication Technology&nbsp;488</p>
<p>15.2&nbsp; Core–sheath Nano ber Technology&nbsp;489</p>
<p>15.2.1&nbsp;Co–axial Electrospinning&nbsp;491</p>
<p>15.2.2&nbsp;Emulsion Electrospinning&nbsp;501</p>
<p>15.2.3&nbsp;Melt Co–axial Electrospinning&nbsp;503</p>
<p>15.3Application of Core–sheath Nano bers&nbsp;504</p>
<p>15.3.1&nbsp;Delivery of Bioactive Molecules&nbsp;504</p>
<p>15.3.2&nbsp;Tissue Engineering&nbsp;513</p>
<p>15.4&nbsp; Conclusions&nbsp;519</p>
<p>References&nbsp;519</p>

Rubrieken

    Personen

      Trefwoorden

        Nanomaterials in Drug Delivery, Imaging, and Tissu e Engineering