Bioprocessing of Renewable Resources to Commodity Bioproducts

Specificaties
Gebonden, 584 blz. | Engels
John Wiley & Sons | e druk, 2014
ISBN13: 9781118175835
Rubricering
John Wiley & Sons e druk, 2014 9781118175835
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This book provides the vision of a successful biorefinery the lignocelluloic biomass needs to be efficiently converted to its constituent monomers, comprising mainly of sugars such as glucose, xylose, mannose and arabinose. Accordingly, the first part of the book deals with aspects crucial for the pretreatment and hydrolysis of biomass to give sugars in high yield, as well as the general aspects of bioprocessing technologies which will enable the development of biorefineries through inputs of metabolic engineering, fermentation, downstream processing and formulation. The second part of the book gives the current status and future directions of the biological processes for production of ethanol (a biofuel as well as an important commodity raw material), solvents (butanol, isobutanol, butanediols, propanediols), organic acids (lactic acid, 3–hydroxy propionic acid, fumaric acid, succinic acid and adipic acid), and amino acid (glutamic acid). The commercial production of some of these commodity bioproducts in the near future will have a far reaching effect in realizing our goal of sustainable conversion of these renewable resources and realizing the concept of biorefinery.

Suitable for researchers, practitioners, graduate students and consultants in biochemical/ bioprocess engineering, industrial microbiology, bioprocess technology, metabolic engineering, environmental science and energy, the book offers:

Exemplifies the application of metabolic engineering approaches for development of microbial cell factories
Provides a unique perspective to the industry about the scientific problems and their possible solutions in making a bioprocess work for commercial production of commodity bioproducts
Discusses the processing of renewable resources, such as plant biomass, for  mass production of commodity chemicals and liquid fuels to meet our ever– increasing demands
Encourages sustainable green technologies for the utilization of renewable resources
Offers timely solutions to help address the energy problem as non–renewable fossil oil will soon be unavailable

Specificaties

ISBN13:9781118175835
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:584

Inhoudsopgave

<p>PREFACE xv</p>
<p>CONTRIBUTORS xix</p>
<p>PART I ENABLING PROCESSING TECHNOLOGIES</p>
<p>1 Biorefineries Concepts for Sustainability 3<br /> Michael Sauer, Matthias Steiger, Diethard Mattanovich, and Hans Marx</p>
<p>1.1 Introduction 4</p>
<p>1.2 Three Levels for Biomass Use 5</p>
<p>1.3 The Sustainable Removal of Biomass from the Field is Crucial for a Successful Biorefinery 7</p>
<p>1.4 Making Order: Classification of Biorefineries 8</p>
<p>1.5 Quantities of Sustainably Available Biomass 10</p>
<p>1.6 Quantification of Sustainability 11</p>
<p>1.7 Starch– and Sugar–Based Biorefinery 12</p>
<p>1.7.1 Sugar Crop Raffination 14</p>
<p>1.7.2 Starch Crop Raffination 14</p>
<p>1.8 Oilseed Crops 14</p>
<p>1.9 Lignocellulosic Feedstock 16</p>
<p>1.9.1 Biochemical Biorefinery (Fractionation Biorefinery) 16</p>
<p>1.9.2 Syngas Biorefinery (Gasification Biorefinery) 18</p>
<p>1.10 Green Biorefinery 19</p>
<p>1.11 Microalgae 20</p>
<p>1.12 Future Prospects Aiming for Higher Value from Biomass 21</p>
<p>References 24</p>
<p>2 Biomass Logistics 29<br /> Kevin L. Kenney, J. Richard Hess, Nathan A. Stevens, William A. Smith, Ian J. Bonner, and David J. Muth</p>
<p>2.1 Introduction 30</p>
<p>2.2 Method of Assessing Uncertainty, Sensitivity, and Influence of Feedstock Logistic System Parameters 31</p>
<p>2.2.1 Analysis Step 1 Defining the Model System 31</p>
<p>2.2.2 Analysis Step 2 Defining Input Parameter Probability Distributions 31</p>
<p>2.2.3 Analysis Step 3 Perform Deterministic Computations 32</p>
<p>2.2.4 Analysis Step 4 Deciphering the Results 34</p>
<p>2.3 Understanding Uncertainty in the Context of Feedstock Logistics 36</p>
<p>2.3.1 Increasing Biomass Collection Efficiency by Responding to In–Field Variability 36</p>
<p>2.3.2 Minimizing Storage Losses by Addressing Moisture Variability 38</p>
<p>2.4 Future Prospects 40</p>
<p>2.5 Financial Disclosure/Acknowledgments 40</p>
<p>References 41</p>
<p>3 Pretreatment of Lignocellulosic Materials 43<br /> Karthik Rajendran and Mohammad J. Taherzadeh</p>
<p>3.1 Introduction 44</p>
<p>3.2 Complexity of Lignocelluloses 45</p>
<p>3.2.1 Anatomy of Lignocellulosic Biomass 45</p>
<p>3.2.2 Proteins Present in the Plant Cell Wall 46</p>
<p>3.2.3 Presence of Lignin in the Cell Wall of Plants 47</p>
<p>3.2.4 Polymeric Interaction in the Plant Cell Wall 48</p>
<p>3.2.5 Lignocellulosic Biomass Recalcitrance 49</p>
<p>3.3 Challenges in Pretreatment of Lignocelluloses 52</p>
<p>3.4 Pretreatment Methods and Mechanisms 53</p>
<p>3.4.1 Physical Pretreatment Methods 53</p>
<p>3.4.2 Chemical and Physicochemical Methods 56</p>
<p>3.4.3 Biological Methods 61</p>
<p>3.5 Economic Outlook 64</p>
<p>3.6 Future Prospects 67</p>
<p>References 68</p>
<p>4 Enzymatic Hydrolysis of Lignocellulosic Biomass 77<br /> Jonathan J. Stickel, Roman Brunecky, Richard T. Elander, and James D. McMillan</p>
<p>4.1 Introduction 78</p>
<p>4.2 Cellulase, Hemicellulase, and Accessory Enzyme Systems and Their Synergistic Action on Lignocellulosic Biomass 79</p>
<p>4.2.1 Biomass Recalcitrance 79</p>
<p>4.2.2 Cellulases 80</p>
<p>4.2.3 Hemicellulases 81</p>
<p>4.2.4 Accessory Enzymes 81</p>
<p>4.2.5 Synergy with Xylan Removal and Cellulases 82</p>
<p>4.3 Enzymatic Hydrolysis at High Concentrations of Biomass Solids 83</p>
<p>4.3.1 Conversion Yield Calculations 84</p>
<p>4.3.2 Product Inhibition of Enzymes 85</p>
<p>4.3.3 Slurry Transport and Mixing 86</p>
<p>4.3.4 Heat and Mass Transport 87</p>
<p>4.4 Mechanistic Process Modeling and Simulation 88</p>
<p>4.5 Considerations for Process Integration and Economic Viability 91</p>
<p>4.5.1 Feedstock 91</p>
<p>4.5.2 Pretreatment 92</p>
<p>4.5.3 Downstream Conversion 94</p>
<p>4.6 Economic Outlook 95</p>
<p>4.7 Future Prospects 96</p>
<p>Acknowledgments 97</p>
<p>References 97</p>
<p>5 Production of Cellulolytic Enzymes 105<br /> Ranjita Biswas, Abhishek Persad, and Virendra S. Bisaria</p>
<p>5.1 Introduction 106</p>
<p>5.2 Hydrolytic Enzymes for Digestion of Lignocelluloses 107</p>
<p>5.2.1 Cellulases 107</p>
<p>5.2.2 Xylanases 108</p>
<p>5.3 Desirable Attributes of Cellulase for Hydrolysis of Cellulose 109</p>
<p>5.4 Strategies Used for Enhanced Enzyme Production 110</p>
<p>5.4.1 Genetic Methods 110</p>
<p>5.4.2 Process Methods 114</p>
<p>5.5 Economic Outlook 123</p>
<p>5.6 Future Prospects 123</p>
<p>References 124</p>
<p>6 Bioprocessing Technologies 133<br /> Gopal Chotani, Caroline Peres, Alexandra Schuler, and Peyman Moslemy</p>
<p>6.1 Introduction 134</p>
<p>6.2 Cell Factory Platform 136</p>
<p>6.2.1 Properties of a Biocatalyst 137</p>
<p>6.2.2 Recent Trends in Cell Factory Construction for Bioprocessing 140</p>
<p>6.3 Fermentation Process 142</p>
<p>6.4 Recovery Process 147</p>
<p>6.4.1 Active Dry Yeast 148</p>
<p>6.4.2 Unclarified Enzyme Product 149</p>
<p>6.4.3 Clarified Enzyme Product 150</p>
<p>6.4.4 BioisopreneTM 151</p>
<p>6.5 Formulation Process 153</p>
<p>6.5.1 Solid Forms 154</p>
<p>6.5.2 Slurry or Paste Forms 159</p>
<p>6.5.3 Liquid Forms 160</p>
<p>6.6 Final Product Blends 161</p>
<p>6.7 Economic Outlook and Future Prospects 162</p>
<p>Acknowledgment 163</p>
<p>Nomenclature 163</p>
<p>References 163</p>
<p>PART II SPECIFIC COMMODITY BIOPRODUCTS</p>
<p>7 Ethanol from Bacteria 169<br /> Hideshi Yanase</p>
<p>7.1 Introduction 170</p>
<p>7.2 Heteroethanologenic Bacteria 172</p>
<p>7.2.1 Escherichia coli 173</p>
<p>7.2.2 Klebsiella oxytoca 177</p>
<p>7.2.3 Erwinia spp. and Enterobacter asburiae 178</p>
<p>7.2.4 Corynebacterium glutamicum 179</p>
<p>7.2.5 Thermophilic Bacteria 180</p>
<p>7.3 Homoethanologenic Bacteria 183</p>
<p>7.3.1 Zymomonas mobilis 184</p>
<p>7.3.2 Zymobacter palmae 189</p>
<p>7.4 Economic Outlook 191</p>
<p>7.5 Future Prospects 192</p>
<p>References 193</p>
<p>8 Ethanol Production from Yeasts 201<br /> Tomohisa Hasunuma, Ryosuke Yamada, and Akihiko Kondo</p>
<p>8.1 Introduction 202</p>
<p>8.2 Ethanol Production from Starchy Biomass 205</p>
<p>8.2.1 Starch Utilization Process 205</p>
<p>8.2.2 Yeast Cell Surface Engineering System for Biomass Utilization 205</p>
<p>8.2.3 Ethanol Production from Starchy Biomass Using Amylase–Expressing Yeast 206</p>
<p>8.3 Ethanol Production from Lignocellulosic Biomass 208</p>
<p>8.3.1 Lignocellulose Utilization Process 208</p>
<p>8.3.2 Fermentation of Cellulosic Materials 209</p>
<p>8.3.3 Fermentation of Hemicellulosic Materials 215</p>
<p>8.3.4 Ethanol Production in the Presence of Fermentation Inhibitors 217</p>
<p>8.4 Economic Outlook 218</p>
<p>8.5 Future Prospects 220</p>
<p>References 220</p>
<p>9 Fermentative Biobutanol Production: An Old Topic with Remarkable Recent Advances 227<br /> Yi Wang, Holger Janssen and Hans P. Blaschek</p>
<p>9.1 Introduction 228</p>
<p>9.2 Butanol as a Fuel and Chemical Feedstock 229</p>
<p>9.3 History of ABE Fermentation 230</p>
<p>9.4 Physiology of Clostridial ABE Fermentation 232</p>
<p>9.4.1 The Clostridial Cell Cycle 232</p>
<p>9.4.2 Physiology and Enzymes of the Central Metabolic Pathway 233</p>
<p>9.5 Abe Fermentation Processes, Butanol Toxicity, and Product Recovery 236</p>
<p>9.5.1 ABE Fermentation Processes 236</p>
<p>9.5.2 Butanol Toxicity and Butanol–Tolerant Strains 237</p>
<p>9.5.3 Fermentation Products Recovery 238</p>
<p>9.6 Metabolic Engineering and Omics Analyses of Solventogenic Clostridia 239</p>
<p>9.6.1 Development and Application of Metabolic Engineering Techniques 239</p>
<p>9.6.2 Butanol Production by Engineered Microbes 242</p>
<p>9.6.3 Global Insights into Solventogenic Metabolism Based on Transcriptomics and Proteomics 245</p>
<p>9.7 Economic Outlook 246</p>
<p>9.8 Current Status and Future Prospects 247</p>
<p>References 251</p>
<p>10 Bio–based Butanediols Production: The Contributions of Catalysis, Metabolic Engineering, and Synthetic Biology 261<br /> Xiao–Jun Ji and He Huang</p>
<p>10.1 Introduction 262</p>
<p>10.2 Bio–Based 2,3–Butanediol 264</p>
<p>10.2.1 Via Catalytic Hydrogenolysis 264</p>
<p>10.2.2 Via Sugar Fermentation 265</p>
<p>10.3 Bio–Based 1,4–Butanediol 276</p>
<p>10.3.1 Via Catalytic Hydrogenation 276</p>
<p>10.3.2 Via Sugar Fermentation 277</p>
<p>10.4 Economic Outlook 279</p>
<p>10.5 Future Prospects 280</p>
<p>Acknowledgments 280</p>
<p>References 280</p>
<p>11 1,3–Propanediol 289<br /> Yaqin Sun, Chengwei Ma, Hongxin Fu, Ying Mu, and Zhilong Xiu</p>
<p>11.1 Introduction 290</p>
<p>11.2 Bioconversion of Glucose into 1,3–Propanediol 291</p>
<p>11.3 Bioconversion of Glycerol into 1,3–Propanediol 292</p>
<p>11.3.1 Strains 292</p>
<p>11.3.2 Fermentation 293</p>
<p>11.3.3 Bioprocess Optimization and Control 301</p>
<p>11.4 Metabolic Engineering 302</p>
<p>11.4.1 Stoichiometric Analysis/MFA 302</p>
<p>11.4.2 Pathway Engineering 304</p>
<p>11.5 Down–Processing of 1,3–Propanediol 308</p>
<p>11.6 Integrated Processes 311</p>
<p>11.6.1 Biodiesel and 1,3–Propanediol 311</p>
<p>11.6.2 Glycerol and 1,3–Propanediol 313</p>
<p>11.6.3 1,3–Propanediol and Biogas 314</p>
<p>11.7 Economic Outlook 314</p>
<p>11.8 Future Prospects 315</p>
<p>Acknowledgments 316</p>
<p>A List of Abbreviations 316</p>
<p>References 317</p>
<p>12 Isobutanol 327<br /> Bernhard J. Eikmanns and Bastian Blombach</p>
<p>12.1 Introduction 328</p>
<p>12.2 The Access Code for the Microbial Production of Branched–Chain Alcohols: 2–Ketoacid Decarboxylase and an Alcohol Dehydrogenase 329</p>
<p>12.3 Metabolic Engineering Strategies for Directed Production of Isobutanol 331</p>
<p>12.3.1 Isobutanol Production with Escherichia coli 331</p>
<p>12.3.2 Isobutanol Production with Corynebacterium glutamicum 335</p>
<p>12.3.3 Isobutanol Production with Bacillus subtilis 337</p>
<p>12.3.4 Isobutanol Production with Clostridium cellulolyticum 339</p>
<p>12.3.5 Isobutanol Production with Ralstonia eutropha 339</p>
<p>12.3.6 Isobutanol Production with Synechococcus elongatus 340</p>
<p>12.3.7 Isobutanol Production with Saccharomyces cerevisiae 341</p>
<p>12.4 Overcoming Isobutanol Cytotoxicity 341</p>
<p>12.5 Process Development for the Production of Isobutanol 343</p>
<p>12.6 Economic Outlook 345</p>
<p>12.7 Future Prospects 346</p>
<p>Abbreviations 347</p>
<p>Nomenclature 347</p>
<p>References 349</p>
<p>13 Lactic Acid 353<br /> Kenji Okano, Tsutomu Tanaka, and Akihiko Kondo</p>
<p>13.1 History of Lactic Acid 354</p>
<p>13.2 Applications of Lactic Acid 354</p>
<p>13.3 Poly Lactic Acid 354</p>
<p>13.4 Conventional Lactic Acid Production 356</p>
<p>13.5 Lactic Acid Production From Renewable Resources 357</p>
<p>13.5.1 Lactic Acid Bacteria 359</p>
<p>13.5.2 Escherichia coli 364</p>
<p>13.5.3 Corynebacterium glutamicum 368</p>
<p>13.5.4 Yeasts 370</p>
<p>13.6 Economic Outlook 373</p>
<p>13.7 Future Prospects 374</p>
<p>Nomenclature 374</p>
<p>References 375</p>
<p>14 Microbial Production of 3–Hydroxypropionic Acid From Renewable Sources: A Green Approach as an Alternative to Conventional Chemistry 381<br /> Vinod Kumar, Somasundar Ashok, and Sunghoon Park</p>
<p>14.1 Introduction 382</p>
<p>14.2 Natural Microbial Production of 3–HP 383</p>
<p>14.3 Production of 3–HP from Glucose by Recombinant Microorganisms 385</p>
<p>14.4 Production of 3–HP from Glycerol by Recombinant Microorganisms 388</p>
<p>14.4.1 Glycerol Metabolism for the Production of 3–HP and Cell Growth 389</p>
<p>14.4.2 Synthesis of 3–HP from Glycerol Through the CoA–Dependent Pathway 390</p>
<p>14.4.3 Synthesis of 3–HP From Glycerol Through the CoA–Independent Pathway 392</p>
<p>14.4.4 Coproduction of 3–HP and PDO From Glycerol 394</p>
<p>14.5 Major Challenges for Microbial Production of 3–HP 396</p>
<p>14.5.1 Toxicity and Tolerance 396</p>
<p>14.5.2 Redox Balance and By–products Formation 399</p>
<p>14.5.3 Vitamin B12 Supply 400</p>
<p>14.6 Economic Outlook 400</p>
<p>14.7 Future Prospects 401</p>
<p>Acknowledgment 401</p>
<p>List of Abbreviations 402</p>
<p>References 402</p>
<p>15 Fumaric Acid Biosynthesis and Accumulation 409<br /> Israel Goldberg and J. Stefan Rokem</p>
<p>15.1 Introduction 410</p>
<p>15.1.1 Uses 410</p>
<p>15.1.2 Production 411</p>
<p>15.2 Microbial Synthesis of Fumaric Acid 412</p>
<p>15.2.1 Producer Organisms 412</p>
<p>15.2.2 Carbon Sources 414</p>
<p>15.2.3 Solid–State Fermentations 414</p>
<p>15.2.4 Submerged Fermentation Conditions 415</p>
<p>15.2.5 Transport of Fumaric Acid 416</p>
<p>15.2.6 Production Processes 416</p>
<p>15.3 A Plausible Biochemical Mechanism for Fumaric Acid Biosynthesis and Accumulation in Rhizopus 417</p>
<p>15.3.1 How Can the High Molar Yield of Fumaric Acid be Explained? 417</p>
<p>15.3.2 Where in the Cell is the Localization of the Reductive Reactions of the TCA Cycle? 418</p>
<p>15.3.3 What is the Role of Cytosolic Fumarase in Fumaric Acid Accumulation in Rhizopus Strain? 419</p>
<p>15.4 Toward Engineering Rhizopus for Fumaric Acid Production 422</p>
<p>15.5 Economic Outlook 424</p>
<p>15.6 Future Perspectives 427</p>
<p>15.6.1 Biorefinery 427</p>
<p>15.6.2 Platform Microorganisms 427</p>
<p>Acknowledgment 429</p>
<p>References 430</p>
<p>16 Succinic Acid 435<br /> Boris Litsanov, Melanie Brocker, Marco Oldiges, and Michael Bott</p>
<p>16.1 Succinate as an Important Platform Chemical for a Sustainable Bio–Based Chemistry 436</p>
<p>16.2 Microorganisms for Bio–Succinate Production Physiology, Metabolic Routes, and Strain Development 437</p>
<p>16.2.1 Anaerobiospirillum succiniciproducens 443</p>
<p>16.2.2 Family Pasteurellaceae 444</p>
<p>16.2.3 Escherichia coli 448</p>
<p>16.2.4 Corynebacterium glutamicum 451</p>
<p>16.2.5 Yeast–Based Producers 454</p>
<p>16.3 Neutral Versus Acidic Conditions for Product Formation 455</p>
<p>16.4 Downstream Processing 456</p>
<p>16.5 Companies Involved in Bio–Succinic Acid Manufacturing 458</p>
<p>16.5.1 Bioamber Inc. 459</p>
<p>16.5.2 Myriant Technologies LLC 459</p>
<p>16.5.3 Reverdia 462</p>
<p>16.5.4 Succinity GmbH 462</p>
<p>16.6 Future Prospects and Economic Outlook 462</p>
<p>References 463</p>
<p>17 Glutamic Acid 473<br /> Takashi Hirasawa and Hiroshi Shimizu</p>
<p>17.1 Introduction 474</p>
<p>17.2 Glutamic Acid Production by Corynebacterium Glutamicum 475</p>
<p>17.2.1 Glutamic Acid Production by Corynebacterium Glutamicum and Its Molecular Mechanism 475</p>
<p>17.2.2 Metabolic Engineering of Glutamic Acid Production by Corynebacterium Glutamicum 478</p>
<p>17.3 Glutamic Acid as a Building Block 481</p>
<p>17.3.1 Production of Chemicals from Glutamic Acid Using Microorganisms 481</p>
<p>17.3.2 Production of Other Chemicals from Glutamic Acid 487</p>
<p>17.4 Economic Outlook 487</p>
<p>17.5 Future Prospects 489</p>
<p>List of Abbreviations 489</p>
<p>References 489</p>
<p>18 Recent Advances for Microbial Production of Xylitol 497<br /> Yong–Cheol Park, Sun–Ki Kim, and Jin–Ho Seo</p>
<p>18.1 Introduction 498</p>
<p>18.2 General Principles for Biological Production of Xylitol 498</p>
<p>18.3 Microbial Production of Xylitol 501</p>
<p>18.3.1 Carbon Sources 501</p>
<p>18.3.2 Aeration 501</p>
<p>18.3.3 Optimization of Fermentation Strategies 503</p>
<p>18.4 Xylitol Production by Genetically Engineered Microorganisms 508</p>
<p>18.4.1 Construction of Xylitol–Producing Recombinant Saccharomyces cerevisiae 508</p>
<p>18.4.2 Cofactor Engineering for Xylitol Production in Recombinant Saccharomyces cerevisiae 510</p>
<p>18.4.3 Other Recombinant Microorganisms for Xylitol Production 512</p>
<p>18.5 Economic Outlook 514</p>
<p>18.6 Future Prospects 515</p>
<p>Acknowledgments 515</p>
<p>Nomenclature 515</p>
<p>References 516</p>
<p>19 First and Second Generation Production of Bio–Adipic Acid 519<br /> Jozef Bernhard Johann Henry van Duuren and Christoph Wittmann</p>
<p>19.1 Introduction 520</p>
<p>19.2 Production of Bio–Adipic Acid 523</p>
<p>19.2.1 Natural Formation by Microorganisms 523</p>
<p>19.2.2 First Generation Bio–Adipic Acid 524</p>
<p>19.2.3 Second Generation Bio–Adipic Acid 528</p>
<p>19.3 Ecological Footprint of Bio–Adipic Acid 530</p>
<p>19.4 Economic Outlook 535</p>
<p>19.5 Future Prospects 536</p>
<p>References 538</p>
<p>INDEX 541</p>

Rubrieken

    Personen

      Trefwoorden

        Bioprocessing of Renewable Resources to Commodity Bioproducts